Added Model Loading.

This commit is contained in:
Anish Bhobe 2025-06-22 23:21:59 +02:00
parent dfdc0dd6d6
commit 9a2a6a3340
21 changed files with 1074 additions and 598 deletions

2
.gitattributes vendored
View File

@ -3,3 +3,5 @@
*.glb filter=lfs diff=lfs merge=lfs -text *.glb filter=lfs diff=lfs merge=lfs -text
*.hdr filter=lfs diff=lfs merge=lfs -text *.hdr filter=lfs diff=lfs merge=lfs -text
*.exr filter=lfs diff=lfs merge=lfs -text *.exr filter=lfs diff=lfs merge=lfs -text
*.bin filter=lfs diff=lfs merge=lfs -text
*.gltf filter=lfs diff=lfs merge=lfs -text

BIN
Assets/Models/Box.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Models/BoxTextured.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Models/BoxVertexColors.glb (Stored with Git LFS) Normal file

Binary file not shown.

BIN
Assets/Models/OrientationTest.glb (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -3,8 +3,10 @@ import Bindless;
struct VertexOut { struct VertexOut {
float4 outPosition : SV_Position; float4 outPosition : SV_Position;
float4 screenPosition : ScreenPosition; float4 screenPosition : ScreenPosition;
float4 vertexColor : CoarseColor; float4 normal : CoarseNormal;
float2 texCoord0 : TexCoord0; float2 texCoord0 : TexCoord0;
float2 texCoord1 : TexCoord1;
float4 vertexColor0 : VertexColor;
}; };
struct CameraData { struct CameraData {
@ -17,6 +19,10 @@ uniform ParameterBlock<CameraData> camera;
struct PerInstanceData { struct PerInstanceData {
float4x4 transform; float4x4 transform;
Sampler2D.RID textureID; Sampler2D.RID textureID;
uint _padding;
float metallic;
float roughness;
float4 baseColor;
} }
[[vk::push_constant]] [[vk::push_constant]]
@ -26,27 +32,37 @@ uniform ConstantBuffer<PerInstanceData> pcb;
VertexOut VertexMain( VertexOut VertexMain(
uint vertexId: SV_VertexID, uint vertexId: SV_VertexID,
float3 position, float3 position,
float3 color, float3 normal,
float2 texCoord0, float2 texCoord0,
float2 texCoord1,
float4 vertexColor0,
) { ) {
VertexOut output; VertexOut output;
output.outPosition = mul(camera.proj, mul(camera.view, mul(pcb.transform, float4(position, 1.0f)))); output.outPosition = mul(camera.proj, mul(camera.view, mul(pcb.transform, float4(position, 1.0f))));
output.screenPosition = mul(camera.proj, mul(camera.view, mul(pcb.transform, float4(position, 1.0f)))); output.screenPosition = mul(camera.proj, mul(camera.view, mul(pcb.transform, float4(position, 1.0f))));
output.vertexColor = float4(color, 1.0f); output.normal = mul(pcb.transform, float4(normalize(normal.rgb), 0.0f));
output.texCoord0 = texCoord0 * 2.0f; output.texCoord0 = texCoord0;
output.texCoord1 = texCoord1;
output.vertexColor0 = vertexColor0;
return output; return output;
} }
[shader("fragment")] [shader("fragment")]
float4 FragmentMain( float4 FragmentMain(
float4 interpolatePosition : ScreenPosition, float4 interpolatePosition : ScreenPosition,
float4 interpolatedColors : CoarseColor, float4 interpolatedNormal : CoarseNormal,
float2 uv0 : TexCoord0, float2 uv0 : TexCoord0,
float2 uv1 : TexCoord1,
float4 interpolatedColor : VertexColor,
) : SV_Target0 { ) : SV_Target0 {
let N = interpolatedNormal.xyz;
let L = dot(normalize(N), float3(1.0f, 1.0f, -1.0f));
if (let texture = pcb.textureID) { if (let texture = pcb.textureID) {
return float4(texture.Sample(uv0).rgb, 1.0f) * interpolatedColors; return float4(texture.Sample(uv0).rgb, 1.0f) * pcb.baseColor * interpolatedColor * L;
} else { } else {
return interpolatedColors; return pcb.baseColor * interpolatedColor * L;
} }
} }

View File

@ -180,6 +180,7 @@
<ClInclude Include="Blaze\MacroUtils.h" /> <ClInclude Include="Blaze\MacroUtils.h" />
<ClInclude Include="Blaze\MathUtil.h" /> <ClInclude Include="Blaze\MathUtil.h" />
<ClInclude Include="Blaze\MiscData.h" /> <ClInclude Include="Blaze\MiscData.h" />
<ClInclude Include="Blaze\ModelLoader.h" />
<ClInclude Include="Blaze\RenderDevice.h" /> <ClInclude Include="Blaze\RenderDevice.h" />
<ClInclude Include="Blaze\RID.h" /> <ClInclude Include="Blaze\RID.h" />
<ClInclude Include="Blaze\TextureManager.h" /> <ClInclude Include="Blaze\TextureManager.h" />
@ -189,11 +190,13 @@
<ClCompile Include="Blaze\AppState.cpp" /> <ClCompile Include="Blaze\AppState.cpp" />
<ClCompile Include="Blaze\Blaze.cpp" /> <ClCompile Include="Blaze\Blaze.cpp" />
<ClCompile Include="Blaze\BufferManager.cpp" /> <ClCompile Include="Blaze\BufferManager.cpp" />
<ClCompile Include="Blaze\CgltfImpl.cpp" />
<ClCompile Include="Blaze\EntityManager.cpp" /> <ClCompile Include="Blaze\EntityManager.cpp" />
<ClCompile Include="Blaze\Frame.cpp" /> <ClCompile Include="Blaze\Frame.cpp" />
<ClCompile Include="Blaze\FreeList.cpp" /> <ClCompile Include="Blaze\FreeList.cpp" />
<ClCompile Include="Blaze\GlobalMemory.cpp" /> <ClCompile Include="Blaze\GlobalMemory.cpp" />
<ClCompile Include="Blaze\MiscData.cpp" /> <ClCompile Include="Blaze\MiscData.cpp" />
<ClCompile Include="Blaze\ModelLoader.cpp" />
<ClCompile Include="Blaze\RenderDevice.cpp" /> <ClCompile Include="Blaze\RenderDevice.cpp" />
<ClCompile Include="Blaze\StbImpl.cpp" /> <ClCompile Include="Blaze\StbImpl.cpp" />
<ClCompile Include="Blaze\TextureManager.cpp" /> <ClCompile Include="Blaze\TextureManager.cpp" />

View File

@ -133,6 +133,9 @@
<ClCompile Include="Blaze\ModelLoader.cpp"> <ClCompile Include="Blaze\ModelLoader.cpp">
<Filter>Source Files</Filter> <Filter>Source Files</Filter>
</ClCompile> </ClCompile>
<ClCompile Include="Blaze\CgltfImpl.cpp">
<Filter>Source Files\HeaderOnlyImpl</Filter>
</ClCompile>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<Image Include="Assets\Textures\container2.png"> <Image Include="Assets\Textures\container2.png">

View File

@ -53,7 +53,7 @@ AppState* AppState_Create( GlobalMemory* memory, uint32_t const width, uint32_t
return nullptr; return nullptr;
} }
EntityManager* entityManager = EntityManager_Create( memory, renderDevice, 10 ); EntityManager* entityManager = EntityManager_Create( memory, renderDevice, 1000 );
if ( !entityManager ) if ( !entityManager )
{ {
SDL_LogError( SDL_LOG_CATEGORY_APPLICATION, "EntityManager failed to init" ); SDL_LogError( SDL_LOG_CATEGORY_APPLICATION, "EntityManager failed to init" );

View File

@ -24,6 +24,8 @@
#include "MiscData.h" #include "MiscData.h"
#include "RenderDevice.h" #include "RenderDevice.h"
#include "ModelLoader.h"
constexpr uint32_t WIDTH = 1280; constexpr uint32_t WIDTH = 1280;
constexpr uint32_t HEIGHT = 720; constexpr uint32_t HEIGHT = 720;
constexpr uint32_t NUM_FRAMES = 3; constexpr uint32_t NUM_FRAMES = 3;
@ -44,57 +46,9 @@ SDL_AppResult SDL_AppInit( void** appstate, int, char** )
AppState& appState = *static_cast<AppState*>( *appstate ); AppState& appState = *static_cast<AppState*>( *appstate );
// TODO: Integrate this Entity const* entity =
LoadModel( appState.renderDevice, appState.entityManager, "Assets/Models/OrientationTest.glb" );
// TL----TR ASSERT( entity );
// | \ |
// | \ |
// | \ |
// BL----BR
//
// BL -> BR -> TL
// TL -> BR -> TR
std::array vertices = {
// Bottom Left
Vertex{
.position = { -1.0f, -1.0f, 0.0f },
.color = { 0.0f, 0.0f, 1.0f },
.texCoord0 = { 0.0f, 0.0f },
},
// Bottom Right
Vertex{
.position = { 1.0f, -1.0f, 0.0f },
.color = { 1.0f, 0.0f, 0.0f },
.texCoord0 = { 1.0f, 0.0f },
},
// Top Left
Vertex{
.position = { -1.0f, 1.0f, 0.0f },
.color = { 0.0f, 1.0f, 0.0f },
.texCoord0 = { 0.0f, 1.0f },
},
// Top Right
Vertex{
.position = { 1.0f, 1.0f, 0.0f },
.color = { 1.0f, 1.0f, 0.0f },
.texCoord0 = { 1.0f, 1.0f },
}
};
Transform modelTransform = {
.position = { 0.0f, 0.0f, 2.0f },
.scale = 1.0f,
.rotation = DirectX::XMQuaternionRotationAxis( DirectX::XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ), 0.0f ),
};
for ( int i = -1; i <= 1; ++i )
{
modelTransform.position.x = static_cast<float>( i );
appState.entityManager->createEntity(
modelTransform, vertices, i > 0 ? "Assets/Textures/wall.jpg" : "Assets/Textures/container2.png" );
}
return SDL_APP_CONTINUE; return SDL_APP_CONTINUE;
} }
@ -133,11 +87,13 @@ SDL_AppResult SDL_AppIterate( void* appstate )
for ( Entity& entity : entityManager.iter() ) for ( Entity& entity : entityManager.iter() )
{ {
entity.transform().rotation = DirectX::XMQuaternionMultiply( if ( not entity.isRoot() ) continue;
entity.transform.rotation = DirectX::XMQuaternionMultiply(
DirectX::XMQuaternionRotationAxis( DirectX::XMQuaternionRotationAxis(
DirectX::XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ), DirectX::XMVectorSet( 0.0f, 1.0f, 0.0f, 0.0f ),
DirectX::XMConvertToRadians( 60.0f ) * static_cast<float>( deltaTime ) ), DirectX::XMConvertToRadians( 60.0f ) * static_cast<float>( deltaTime ) ),
entity.transform().rotation ); entity.transform.rotation );
} }
uint32_t currentImageIndex; uint32_t currentImageIndex;
@ -251,41 +207,66 @@ SDL_AppResult SDL_AppIterate( void* appstate )
vkCmdBindDescriptorSets( vkCmdBindDescriptorSets(
cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, misc.pipelineLayout, 1, 1, &misc.descriptorSet, 0, nullptr ); cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, misc.pipelineLayout, 1, 1, &misc.descriptorSet, 0, nullptr );
std::function<void( Entity const&, DirectX::XMMATRIX const& )> drawEntity = std::function<void( Entity const&, DirectX::XMMATRIX const&, Model const* )> drawEntity =
[&]( Entity const& entity, DirectX::XMMATRIX const& parent ) [&]( Entity const& entity, DirectX::XMMATRIX const& parent, Model const* current )
{ {
Transform const& localTransform = entity.transform(); Transform const& localTransform = entity.transform;
DirectX::XMMATRIX worldTransform; DirectX::XMMATRIX worldTransform;
{ {
auto [x, y, z] = localTransform.position; worldTransform =
auto scale = localTransform.scale; DirectX::XMMatrixAffineTransformation(
worldTransform = DirectX::XMMatrixScaling( scale, scale, scale ) * localTransform.scale, DirectX::XMVectorZero(), localTransform.rotation, localTransform.translation ) *
DirectX::XMMatrixRotationQuaternion( localTransform.rotation ) * parent;
DirectX::XMMatrixTranslation( x, y, z ) * parent;
} }
VkBuffer const vertexBuffer = if ( not entity.model.isNull() )
renderDevice.bufferManager->fetchBuffer( entity.mesh().buffer ).value_or( nullptr );
if ( vertexBuffer )
{ {
VkBuffer const vertexBuffer = renderDevice.bufferManager->fetchBuffer( entity.model.vertexBuffer ).value();
VkBuffer const indexBuffer = renderDevice.bufferManager->fetchBuffer( entity.model.indexBuffer ).value();
VkDeviceSize constexpr offset = 0; VkDeviceSize constexpr offset = 0;
vkCmdBindVertexBuffers( cmd, 0, 1, &vertexBuffer, &offset ); vkCmdBindVertexBuffers( cmd, 0, 1, &vertexBuffer, &offset );
vkCmdBindIndexBuffer( cmd, indexBuffer, offset, VK_INDEX_TYPE_UINT32 );
} }
vkCmdPushConstants( vkCmdPushConstants(
cmd, misc.pipelineLayout, VK_SHADER_STAGE_ALL_GRAPHICS, 0, sizeof worldTransform, &worldTransform ); cmd, misc.pipelineLayout, VK_SHADER_STAGE_ALL_GRAPHICS, 0, sizeof worldTransform, &worldTransform );
if ( not entity.modelMesh.isNull() )
{
ASSERT( current );
for ( Primitive const& primitive : std::span{ current->primitives.data() + entity.modelMesh.primitiveStart,
entity.modelMesh.primitiveCount } )
{
byte const* materialData = nullptr;
if ( primitive.material != UINT32_MAX )
{
Material const* mat = &current->materials[primitive.material];
materialData = reinterpret_cast<byte const*>( mat );
materialData += Material::GPU_DATA_OFFSET;
}
else
{
materialData = reinterpret_cast<byte const*>( &DEFAULT_MATERIAL );
materialData += Material::GPU_DATA_OFFSET;
}
vkCmdPushConstants( vkCmdPushConstants(
cmd, cmd,
misc.pipelineLayout, misc.pipelineLayout,
VK_SHADER_STAGE_ALL_GRAPHICS, VK_SHADER_STAGE_ALL_GRAPHICS,
sizeof worldTransform, sizeof worldTransform,
sizeof entity.material().texture, Material::GPU_DATA_SIZE,
&entity.material().texture ); materialData );
vkCmdDraw( cmd, entity.mesh().vertexCount, 1, 0, 0 );
vkCmdDrawIndexed( cmd, primitive.indexCount, 1, primitive.indexStart, primitive.vertexOffset, 0 );
// vkCmdDrawIndexed( cmd, primitive.count, 1, primitive.start, 0 );
}
}
for ( Entity& child : entity.children() ) for ( Entity& child : entity.children() )
{ {
drawEntity( child, worldTransform ); drawEntity( child, worldTransform, entity.model.isNull() ? current : &entity.model );
} }
}; };
@ -296,7 +277,7 @@ SDL_AppResult SDL_AppIterate( void* appstate )
continue; continue;
} }
drawEntity( entity, DirectX::XMMatrixIdentity() ); drawEntity( entity, DirectX::XMMatrixIdentity(), nullptr );
} }
} }
vkCmdEndRendering( cmd ); vkCmdEndRendering( cmd );

View File

@ -123,6 +123,68 @@ std::optional<BufferID> BufferManager::createVertexBuffer( size_t const size )
return std::move( *reinterpret_cast<BufferID*>( &index ) ); return std::move( *reinterpret_cast<BufferID*>( &index ) );
} }
std::optional<BufferID> BufferManager::createIndexBuffer( size_t size )
{
if ( m_freeList.empty() )
{
return std::nullopt;
}
Buffer* bufferSlot = reinterpret_cast<Buffer*>( m_freeList.popFront() );
++m_count;
ASSERT( m_pRenderDevice );
RenderDevice const& renderDevice = *m_pRenderDevice;
VkBufferCreateInfo const bufferCreateInfo = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = size,
.usage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
VmaAllocationCreateInfo constexpr allocationCreateInfo = {
.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT,
.usage = VMA_MEMORY_USAGE_AUTO,
.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
.preferredFlags = 0,
.memoryTypeBits = 0,
.pool = nullptr,
.pUserData = nullptr,
.priority = 1.0f,
};
VmaAllocationInfo allocationInfo;
VkBuffer indexBuffer;
VmaAllocation indexBufferAllocation;
VK_CHECK( vmaCreateBuffer(
renderDevice.gpuAllocator,
&bufferCreateInfo,
&allocationCreateInfo,
&indexBuffer,
&indexBufferAllocation,
&allocationInfo ) );
// NOTE: bufferSlot preserves index between uses.
uint32_t index = bufferSlot->index;
new ( bufferSlot ) Buffer{
.buffer = indexBuffer,
.allocation = indexBufferAllocation,
.mappedData = static_cast<std::byte*>( allocationInfo.pMappedData ),
.size = size,
.index = index,
};
// NOTE: Memory hackery to create BufferID;
return std::move( *reinterpret_cast<BufferID*>( &index ) );
}
void BufferManager::freeBuffer( BufferID&& rid ) void BufferManager::freeBuffer( BufferID&& rid )
{ {
if ( not isValidID( rid ) ) return; if ( not isValidID( rid ) ) return;

View File

@ -56,6 +56,8 @@ public:
std::optional<BufferID> createVertexBuffer( size_t size ); std::optional<BufferID> createVertexBuffer( size_t size );
std::optional<BufferID> createIndexBuffer( size_t size );
void freeBuffer( BufferID&& rid ); void freeBuffer( BufferID&& rid );
DEPRECATE_JULY_2025 DEPRECATE_JULY_2025

3
Blaze/CgltfImpl.cpp Normal file
View File

@ -0,0 +1,3 @@
#define CGLTF_IMPLEMENTATION
#include <cgltf.h>

View File

@ -5,8 +5,6 @@
#include "GlobalMemory.h" #include "GlobalMemory.h"
#include "RenderDevice.h" #include "RenderDevice.h"
#include <stb_image.h>
#include "Frame.h" #include "Frame.h"
#include "TextureManager.h" #include "TextureManager.h"
@ -102,458 +100,48 @@ EntitySiblingIterable Entity::children() const
return { m_firstChild }; return { m_firstChild };
} }
Entity::Entity( Transform const& transform, Mesh&& mesh, Material&& material ) Entity::Entity( Transform const& transform )
: m_transform{ transform } : transform{ transform }
, m_mesh{ std::forward<Mesh>( mesh ) } , model{}
, m_material{ std::forward<Material>( material ) } , modelMesh{}
, m_parent{ nullptr } , m_parent{ nullptr }
, m_firstChild{ nullptr } , m_firstChild{ nullptr }
, m_prevSibling{ nullptr } , m_prevSibling{ nullptr }
, m_nextSibling{ nullptr } , m_nextSibling{ nullptr }
, m_padding0{ 0 } , m_flags{ 0 }
{} {}
Entity* EntityManager::createEntity( Entity* EntityManager::createEntity( Transform const& transform )
Transform const& transform, std::span<Vertex> const vertices, const char* textureFile )
{ {
ASSERT( pRenderDevice ); ASSERT( count < capacity );
RenderDevice& renderDevice = *pRenderDevice;
Mesh mesh; Entity& entity = entities[count++];
{ new ( &entity ) Entity{ transform };
mesh.vertexCount = static_cast<uint32_t>( vertices.size() );
auto vertexBuffer = renderDevice.bufferManager->createVertexBuffer( vertices.size_bytes() ); return &entity;
if ( not vertexBuffer )
{
return nullptr;
}
mesh.buffer = std::move( vertexBuffer.value() );
renderDevice.bufferManager->writeToBuffer( mesh.buffer, vertices );
}
Material material;
{
VkSampler sampler;
uint32_t width;
uint32_t height;
uint32_t numChannels = 4;
stbi_uc* textureData;
{
int w;
int h;
int nc;
int requestedChannels = static_cast<int>( numChannels );
textureData = stbi_load( textureFile, &w, &h, &nc, requestedChannels );
ASSERT( nc <= requestedChannels );
if ( not textureData )
{
renderDevice.bufferManager->freeBuffer( std::move( mesh.buffer ) );
SDL_LogError( SDL_LOG_CATEGORY_ERROR, "%s", stbi_failure_reason() );
return nullptr;
}
width = static_cast<uint32_t>( w );
height = static_cast<uint32_t>( h );
}
VkSamplerCreateInfo constexpr samplerCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.magFilter = VK_FILTER_LINEAR,
.minFilter = VK_FILTER_LINEAR,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.mipLodBias = 0.0,
.anisotropyEnable = true,
.maxAnisotropy = 1.0f,
.compareEnable = false,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = VK_LOD_CLAMP_NONE,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
.unnormalizedCoordinates = false,
};
VK_CHECK( vkCreateSampler( renderDevice.device, &samplerCreateInfo, nullptr, &sampler ) );
auto textureOpt = renderDevice.textureManager->createTexture( { width, height, 1 }, sampler );
if ( not textureOpt )
{
renderDevice.bufferManager->freeBuffer( std::move( mesh.buffer ) );
SDL_LogError( SDL_LOG_CATEGORY_ERROR, "%s", stbi_failure_reason() );
stbi_image_free( textureData );
return nullptr;
}
TextureID texture = std::move( textureOpt.value() );
VkImage textureImage = renderDevice.textureManager->fetchImage( texture ).value();
// Staging Buffer Create
VkBuffer stagingBuffer;
VmaAllocation stagingAllocation;
{
VkBufferCreateInfo const stagingBufferCreateInfo = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = static_cast<VkDeviceSize>( width ) * height * numChannels * sizeof( textureData[0] ),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
VmaAllocationCreateInfo constexpr stagingAllocationCreateInfo = {
.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT,
.usage = VMA_MEMORY_USAGE_AUTO,
.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
.preferredFlags = 0,
.memoryTypeBits = 0,
.pool = nullptr,
.pUserData = nullptr,
.priority = 1.0f,
};
VmaAllocationInfo allocationInfo;
VK_CHECK( vmaCreateBuffer(
renderDevice.gpuAllocator,
&stagingBufferCreateInfo,
&stagingAllocationCreateInfo,
&stagingBuffer,
&stagingAllocation,
&allocationInfo ) );
if ( allocationInfo.pMappedData )
{
memcpy( allocationInfo.pMappedData, textureData, stagingBufferCreateInfo.size );
}
}
// All data is copied to stagingBuffer, don't need this.
stbi_image_free( textureData );
// Staging -> Texture transfer
{
Frame& frameInUse = renderDevice.frames[renderDevice.frameIndex];
// This should just pass.
VK_CHECK( vkWaitForFences( renderDevice.device, 1, &frameInUse.frameReadyToReuse, VK_TRUE, INT64_MAX ) );
// Reset Frame
VK_CHECK( vkResetFences( renderDevice.device, 1, &frameInUse.frameReadyToReuse ) );
VK_CHECK( vkResetCommandPool( renderDevice.device, frameInUse.commandPool, 0 ) );
VkCommandBufferBeginInfo constexpr beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = nullptr,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
.pInheritanceInfo = nullptr,
};
uint32_t mipLevels = TextureManager::calculateRequiredMipLevels( width, height, 1 );
VkImageSubresourceRange const subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = mipLevels,
.baseArrayLayer = 0,
.layerCount = 1,
};
VkImageMemoryBarrier2 const creationToTransferImageBarrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT,
.srcAccessMask = VK_ACCESS_2_NONE,
.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT,
.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = renderDevice.textureManager->fetchImage( texture ).value(),
.subresourceRange = subresourceRange,
};
VkDependencyInfo const creationToTransferDependency = {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pNext = nullptr,
.dependencyFlags = 0,
.memoryBarrierCount = 0,
.pMemoryBarriers = nullptr,
.bufferMemoryBarrierCount = 0,
.pBufferMemoryBarriers = nullptr,
.imageMemoryBarrierCount = 1,
.pImageMemoryBarriers = &creationToTransferImageBarrier,
};
std::array transferToReadyImageBarriers{
// transferToReadyImageBarrier
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
.dstAccessMask = VK_ACCESS_2_SHADER_SAMPLED_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = mipLevels-1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
.dstAccessMask = VK_ACCESS_2_SHADER_SAMPLED_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = mipLevels-1,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
}
};
VkDependencyInfo const transferToReadyDependency = {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pNext = nullptr,
.dependencyFlags = 0,
.memoryBarrierCount = 0,
.pMemoryBarriers = nullptr,
.bufferMemoryBarrierCount = 0,
.pBufferMemoryBarriers = nullptr,
.imageMemoryBarrierCount = static_cast<uint32_t>( transferToReadyImageBarriers.size() ),
.pImageMemoryBarriers = transferToReadyImageBarriers.data(),
};
VkImageSubresourceRange const mipLevelSubresource = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
};
std::array prepareNextMipLevelBarriers{
// prepareNextMipLevelSrcImageBarrier
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.dstAccessMask = VK_ACCESS_2_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = mipLevelSubresource,
},
// prepareNextMipLevelDstImageBarrier
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_COPY_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_BLIT_BIT,
.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = mipLevelSubresource,
}
};
VkDependencyInfo const prepareNextMipLevelDependency = {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pNext = nullptr,
.dependencyFlags = 0,
.memoryBarrierCount = 0,
.pMemoryBarriers = nullptr,
.bufferMemoryBarrierCount = 0,
.pBufferMemoryBarriers = nullptr,
.imageMemoryBarrierCount = static_cast<uint32_t>( prepareNextMipLevelBarriers.size() ),
.pImageMemoryBarriers = prepareNextMipLevelBarriers.data(),
};
vkBeginCommandBuffer( frameInUse.commandBuffer, &beginInfo );
{
VkImageSubresourceLayers imageSubresourceLayers = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
};
// TODO: Ensure `bufferRowLength` and `bufferImageHeight` are not required.
VkBufferImageCopy copyRegion = {
.bufferOffset = 0,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = imageSubresourceLayers,
.imageOffset = { 0, 0, 0 },
.imageExtent = { width, height, 1 }
};
// Start
vkCmdPipelineBarrier2( frameInUse.commandBuffer, &creationToTransferDependency );
// Staging -> Image L0
vkCmdCopyBufferToImage(
frameInUse.commandBuffer,
stagingBuffer,
textureImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion );
prepareNextMipLevelBarriers[0].subresourceRange.baseMipLevel = 0;
prepareNextMipLevelBarriers[1].subresourceRange.baseMipLevel = 1;
int32_t mipSrcWidth = static_cast<int32_t>( width );
int32_t mipSrcHeight = static_cast<int32_t>( height );
int32_t mipDstWidth = std::max( mipSrcWidth / 2, 1 );
int32_t mipDstHeight = std::max( mipSrcHeight / 2, 1 );
VkImageSubresourceLayers constexpr mipSubresourceLayers = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
};
VkImageBlit2 imageBlit = {
.sType = VK_STRUCTURE_TYPE_IMAGE_BLIT_2,
.pNext = nullptr,
.srcSubresource = mipSubresourceLayers,
.srcOffsets = { { 0, 0, 0 }, { mipSrcWidth, mipSrcHeight, 1 } },
.dstSubresource = mipSubresourceLayers,
.dstOffsets = { { 0, 0, 0 }, { mipDstWidth, mipDstHeight, 1 } },
};
imageBlit.srcSubresource.mipLevel = 0;
imageBlit.dstSubresource.mipLevel = 1;
imageBlit.srcOffsets[1].x = mipSrcWidth;
imageBlit.srcOffsets[1].y = mipSrcHeight;
imageBlit.dstOffsets[1].x = mipDstWidth;
imageBlit.dstOffsets[1].y = mipDstHeight;
VkBlitImageInfo2 blitInfo = {
.sType = VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2,
.pNext = nullptr,
.srcImage = textureImage,
.srcImageLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.dstImage = textureImage,
.dstImageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.regionCount = 1,
.pRegions = &imageBlit,
.filter = VK_FILTER_LINEAR,
};
// MipMapping
for ( uint32_t dstMipLevel = 1; dstMipLevel < mipLevels; ++dstMipLevel )
{
vkCmdPipelineBarrier2( frameInUse.commandBuffer, &prepareNextMipLevelDependency );
vkCmdBlitImage2( frameInUse.commandBuffer, &blitInfo );
// Prep for NEXT iteration
mipSrcWidth = mipDstWidth;
mipSrcHeight = mipDstHeight;
mipDstWidth = std::max( mipSrcWidth / 2, 1 );
mipDstHeight = std::max( mipSrcHeight / 2, 1 );
imageBlit.srcSubresource.mipLevel = dstMipLevel;
imageBlit.dstSubresource.mipLevel = dstMipLevel + 1;
imageBlit.srcOffsets[1].x = mipSrcWidth;
imageBlit.srcOffsets[1].y = mipSrcHeight;
imageBlit.dstOffsets[1].x = mipDstWidth;
imageBlit.dstOffsets[1].y = mipDstHeight;
// Prep current mip level as source
prepareNextMipLevelBarriers[0].subresourceRange.baseMipLevel = dstMipLevel;
prepareNextMipLevelBarriers[1].subresourceRange.baseMipLevel = dstMipLevel + 1;
}
// End
vkCmdPipelineBarrier2( frameInUse.commandBuffer, &transferToReadyDependency );
}
vkEndCommandBuffer( frameInUse.commandBuffer );
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = nullptr,
.waitSemaphoreCount = 0,
.pWaitSemaphores = nullptr,
.pWaitDstStageMask = nullptr,
.commandBufferCount = 1,
.pCommandBuffers = &frameInUse.commandBuffer,
.signalSemaphoreCount = 0,
.pSignalSemaphores = nullptr,
};
VK_CHECK( vkQueueSubmit( renderDevice.directQueue, 1, &submitInfo, frameInUse.frameReadyToReuse ) );
// Do not reset this. Else, the frame will never be available to the main loop.
VK_CHECK( vkWaitForFences( renderDevice.device, 1, &frameInUse.frameReadyToReuse, VK_TRUE, UINT64_MAX ) );
renderDevice.frameIndex = ( renderDevice.frameIndex + 1 ) % renderDevice.getNumFrames();
}
vmaDestroyBuffer( renderDevice.gpuAllocator, stagingBuffer, stagingAllocation );
material = {
sampler,
std::move( texture ),
};
}
Entity& alloc = entities[count++];
alloc = Entity( transform, std::move( mesh ), std::move( material ) );
return &alloc;
} }
void EntityManager::destroyEntity( Entity* entity ) void EntityManager::destroyEntity( Entity* entity )
{ {
ASSERT( entity ); ASSERT( entity );
if ( not entity->isInit() ) return;
VkDevice const device = pRenderDevice->device; VkDevice const device = pRenderDevice->device;
vkDestroySampler( device, Take( entity->material().sampler ), nullptr ); if ( not entity->model.isNull() )
{
for ( auto& material : entity->model.materials )
{
vkDestroySampler( device, Take( material.sampler ), nullptr );
pRenderDevice->textureManager->freeTexture( std::move( material.texture ) );
}
pRenderDevice->textureManager->freeTexture( std::move( entity->material().texture ) ); pRenderDevice->bufferManager->freeBuffer( std::move( entity->model.vertexBuffer ) );
pRenderDevice->bufferManager->freeBuffer( std::move( entity->mesh().buffer ) ); pRenderDevice->bufferManager->freeBuffer( std::move( entity->model.indexBuffer ) );
entity->model.primitives.clear();
entity->model.materials.clear();
}
entity->modelMesh = { 0, 0 };
} }
void EntityManager::destroy() void EntityManager::destroy()

View File

@ -8,37 +8,18 @@
#include "VulkanHeader.h" #include "VulkanHeader.h"
// TODO: Remove this dependency // TODO: Remove this dependency
#include "BufferManager.h" #include "BufferManager.h"
#include "ModelLoader.h"
#include "TextureManager.h" #include "TextureManager.h"
struct Entity; struct Entity;
struct RenderDevice; struct RenderDevice;
struct GlobalMemory; struct GlobalMemory;
struct Vertex
{
DirectX::XMFLOAT3 position;
DirectX::XMFLOAT3 color;
DirectX::XMFLOAT2 texCoord0;
};
struct Transform struct Transform
{ {
DirectX::XMFLOAT3 position; DirectX::XMVECTOR translation;
float scale;
DirectX::XMVECTOR rotation; DirectX::XMVECTOR rotation;
}; DirectX::XMVECTOR scale;
struct Mesh
{
BufferID buffer;
uint32_t vertexCount;
};
struct Material
{
VkSampler sampler; // TODO: Reuse
TextureID texture;
uint32_t padding0; // FIXME: Wasting space.
}; };
struct EntitySiblingIterable struct EntitySiblingIterable
@ -60,52 +41,18 @@ struct EntitySiblingIterable
struct Entity struct Entity
{ {
Transform transform;
Model model;
ModelMesh modelMesh;
private: private:
Transform m_transform;
Mesh m_mesh;
Material m_material;
Entity* m_parent; // TODO: Switch to EntityIndex. Entity* m_parent; // TODO: Switch to EntityIndex.
Entity* m_firstChild; Entity* m_firstChild;
Entity* m_prevSibling; Entity* m_prevSibling;
Entity* m_nextSibling; Entity* m_nextSibling;
uint64_t m_padding0; // FIXME: Wasting space. uint64_t m_flags; // FIXME: Wasting space.
public: public:
[[nodiscard]] Transform& transform()
{
return m_transform;
}
[[nodiscard]] Transform const& transform() const
{
return m_transform;
}
[[nodiscard]] Mesh& mesh()
{
return m_mesh;
}
[[nodiscard]] Mesh const& mesh() const
{
return m_mesh;
}
[[nodiscard]] Material& material()
{
return m_material;
}
[[nodiscard]] Material const& material() const
{
return m_material;
}
[[nodiscard]] bool isInit() const
{
return m_mesh.buffer or m_material.texture;
}
[[nodiscard]] bool isRoot() const [[nodiscard]] bool isRoot() const
{ {
return not m_parent; return not m_parent;
@ -132,7 +79,7 @@ public:
[[nodiscard]] EntitySiblingIterable children() const; [[nodiscard]] EntitySiblingIterable children() const;
Entity( Transform const& transform, Mesh&& mesh, Material&& material ); explicit Entity( Transform const& transform );
}; };
struct EntityManager struct EntityManager
@ -173,7 +120,7 @@ struct EntityManager
} }
// Make Entities return ID, make it a sparse indexing system. // Make Entities return ID, make it a sparse indexing system.
Entity* createEntity( Transform const& transform, std::span<Vertex> vertices, const char* textureFile ); Entity* createEntity( Transform const& transform );
void destroyEntity( Entity* entity ); void destroyEntity( Entity* entity );

View File

@ -2,6 +2,8 @@
#include <utility> #include <utility>
using byte = std::byte;
template <std::totally_ordered T> template <std::totally_ordered T>
T Clamp( T const val, T const minVal, T const maxVal ) T Clamp( T const val, T const minVal, T const maxVal )
{ {

View File

@ -60,7 +60,7 @@ bool MiscData::init( RenderDevice const& renderDevice )
VkPushConstantRange const pushConstantRange = { VkPushConstantRange const pushConstantRange = {
.stageFlags = VK_SHADER_STAGE_ALL_GRAPHICS, .stageFlags = VK_SHADER_STAGE_ALL_GRAPHICS,
.offset = 0, .offset = 0,
.size = sizeof( DirectX::XMMATRIX ) + sizeof( uint32_t ), .size = sizeof( DirectX::XMMATRIX ) + Material::GPU_DATA_SIZE
}; };
std::array const descriptorSetLayouts = { std::array const descriptorSetLayouts = {
@ -118,7 +118,7 @@ bool MiscData::init( RenderDevice const& renderDevice )
.location = 1, .location = 1,
.binding = 0, .binding = 0,
.format = VK_FORMAT_R32G32B32_SFLOAT, .format = VK_FORMAT_R32G32B32_SFLOAT,
.offset = offsetof( Vertex, color ), .offset = offsetof( Vertex, normal ),
}, },
VkVertexInputAttributeDescription{ VkVertexInputAttributeDescription{
.location = 2, .location = 2,
@ -126,6 +126,18 @@ bool MiscData::init( RenderDevice const& renderDevice )
.format = VK_FORMAT_R32G32_SFLOAT, .format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof( Vertex, texCoord0 ), .offset = offsetof( Vertex, texCoord0 ),
}, },
VkVertexInputAttributeDescription{
.location = 3,
.binding = 0,
.format = VK_FORMAT_R32G32_SFLOAT,
.offset = offsetof( Vertex, texCoord1 ),
},
VkVertexInputAttributeDescription{
.location = 4,
.binding = 0,
.format = VK_FORMAT_R32G32B32A32_SFLOAT,
.offset = offsetof( Vertex, color0 ),
},
}; };
VkPipelineVertexInputStateCreateInfo const vertexInputState = { VkPipelineVertexInputStateCreateInfo const vertexInputState = {
@ -142,7 +154,7 @@ bool MiscData::init( RenderDevice const& renderDevice )
.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, .sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
.pNext = nullptr, .pNext = nullptr,
.flags = 0, .flags = 0,
.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP, .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
.primitiveRestartEnable = VK_FALSE, .primitiveRestartEnable = VK_FALSE,
}; };
@ -277,7 +289,7 @@ bool MiscData::init( RenderDevice const& renderDevice )
// Camera // Camera
{ {
cameraPosition = DirectX::XMVectorSet( 0.0f, 0.0f, -4.0f, 1.0f ); cameraPosition = DirectX::XMVectorSet( 0.0f, 20.0f, -20.0f, 1.0f );
cameraTarget = DirectX::XMVectorSet( 0.0f, 0.0f, 0.0f, 1.0f ); cameraTarget = DirectX::XMVectorSet( 0.0f, 0.0f, 0.0f, 1.0f );
cameraUp = DirectX::XMVectorSet( 0.0f, 1.0f, 0.0f, 1.0f ); cameraUp = DirectX::XMVectorSet( 0.0f, 1.0f, 0.0f, 1.0f );
cameraData.viewMatrix = DirectX::XMMatrixLookAtLH( cameraPosition, cameraTarget, cameraUp ); cameraData.viewMatrix = DirectX::XMMatrixLookAtLH( cameraPosition, cameraTarget, cameraUp );

756
Blaze/ModelLoader.cpp Normal file
View File

@ -0,0 +1,756 @@
#include "ModelLoader.h"
#include <algorithm>
#include <array>
#include <memory_resource>
#include <string_view>
#include <DirectXMath.h>
#include <SDL3/SDL_log.h>
#include <cgltf.h>
#include <stb_image.h>
#include "EntityManager.h"
#include "Frame.h"
#include "GlobalMemory.h"
#include "MacroUtils.h"
#include "MathUtil.h"
// TODO: Cache materials while loading.
uint32_t ProcessMaterial( RenderDevice* renderDevice, Model* model, cgltf_material const& material )
{
ASSERT( material.has_pbr_metallic_roughness );
DirectX::XMFLOAT4 const baseColorFactor = DirectX::XMFLOAT4{ material.pbr_metallic_roughness.base_color_factor };
VkSampler sampler = nullptr;
TextureID baseColorTexture;
if ( material.pbr_metallic_roughness.base_color_texture.texture )
{
cgltf_image* baseColorImage = material.pbr_metallic_roughness.base_color_texture.texture->image;
{
byte* data;
if ( baseColorImage->buffer_view->data )
{
data = static_cast<byte*>( baseColorImage->buffer_view->data );
}
else
{
data = static_cast<byte*>( baseColorImage->buffer_view->buffer->data ) + baseColorImage->buffer_view->offset;
}
size_t size = baseColorImage->buffer_view->size;
uint32_t width;
uint32_t height;
uint32_t numChannels = 4;
stbi_uc* textureData;
{
int w;
int h;
int nc;
int requestedChannels = static_cast<int>( numChannels );
textureData = stbi_load_from_memory(
reinterpret_cast<stbi_uc const*>( data ), static_cast<int>( size ), &w, &h, &nc, requestedChannels );
ASSERT( nc <= requestedChannels );
if ( not textureData )
{
return UINT32_MAX;
}
width = static_cast<uint32_t>( w );
height = static_cast<uint32_t>( h );
}
VkSamplerCreateInfo constexpr samplerCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.magFilter = VK_FILTER_LINEAR,
.minFilter = VK_FILTER_LINEAR,
.mipmapMode = VK_SAMPLER_MIPMAP_MODE_LINEAR,
.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT,
.mipLodBias = 0.0,
.anisotropyEnable = true,
.maxAnisotropy = 1.0f,
.compareEnable = false,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = VK_LOD_CLAMP_NONE,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK,
.unnormalizedCoordinates = false,
};
VK_CHECK( vkCreateSampler( renderDevice->device, &samplerCreateInfo, nullptr, &sampler ) );
auto textureOpt = renderDevice->textureManager->createTexture( { width, height, 1 }, sampler );
if ( not textureOpt )
{
return UINT32_MAX;
}
baseColorTexture = std::move( textureOpt.value() );
VkImage textureImage = renderDevice->textureManager->fetchImage( baseColorTexture ).value();
// Staging Buffer Create
VkBuffer stagingBuffer;
VmaAllocation stagingAllocation;
{
VkBufferCreateInfo const stagingBufferCreateInfo = {
.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO,
.pNext = nullptr,
.flags = 0,
.size = static_cast<VkDeviceSize>( width ) * height * numChannels * sizeof( textureData[0] ),
.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyIndexCount = 0,
.pQueueFamilyIndices = nullptr,
};
VmaAllocationCreateInfo constexpr stagingAllocationCreateInfo = {
.flags = VMA_ALLOCATION_CREATE_MAPPED_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT,
.usage = VMA_MEMORY_USAGE_AUTO,
.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
.preferredFlags = 0,
.memoryTypeBits = 0,
.pool = nullptr,
.pUserData = nullptr,
.priority = 1.0f,
};
VmaAllocationInfo allocationInfo;
VK_CHECK( vmaCreateBuffer(
renderDevice->gpuAllocator,
&stagingBufferCreateInfo,
&stagingAllocationCreateInfo,
&stagingBuffer,
&stagingAllocation,
&allocationInfo ) );
if ( allocationInfo.pMappedData )
{
memcpy( allocationInfo.pMappedData, textureData, stagingBufferCreateInfo.size );
}
}
// All data is copied to stagingBuffer, don't need this.
stbi_image_free( textureData );
// Staging -> Texture transfer
{
Frame& frameInUse = renderDevice->frames[renderDevice->frameIndex];
// This should just pass.
VK_CHECK( vkWaitForFences( renderDevice->device, 1, &frameInUse.frameReadyToReuse, VK_TRUE, INT64_MAX ) );
// Reset Frame
VK_CHECK( vkResetFences( renderDevice->device, 1, &frameInUse.frameReadyToReuse ) );
VK_CHECK( vkResetCommandPool( renderDevice->device, frameInUse.commandPool, 0 ) );
VkCommandBufferBeginInfo constexpr beginInfo = {
.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO,
.pNext = nullptr,
.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT,
.pInheritanceInfo = nullptr,
};
uint32_t mipLevels = TextureManager::calculateRequiredMipLevels( width, height, 1 );
VkImageSubresourceRange const subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = mipLevels,
.baseArrayLayer = 0,
.layerCount = 1,
};
VkImageMemoryBarrier2 const creationToTransferImageBarrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT,
.srcAccessMask = VK_ACCESS_2_NONE,
.dstStageMask = VK_PIPELINE_STAGE_2_COPY_BIT,
.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = renderDevice->textureManager->fetchImage( baseColorTexture ).value(),
.subresourceRange = subresourceRange,
};
VkDependencyInfo const creationToTransferDependency = {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pNext = nullptr,
.dependencyFlags = 0,
.memoryBarrierCount = 0,
.pMemoryBarriers = nullptr,
.bufferMemoryBarrierCount = 0,
.pBufferMemoryBarriers = nullptr,
.imageMemoryBarrierCount = 1,
.pImageMemoryBarriers = &creationToTransferImageBarrier,
};
std::array transferToReadyImageBarriers{
// transferToReadyImageBarrier
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
.dstAccessMask = VK_ACCESS_2_SHADER_SAMPLED_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = mipLevels-1,
.baseArrayLayer = 0,
.layerCount = 1,
},
},
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT,
.dstAccessMask = VK_ACCESS_2_SHADER_SAMPLED_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = mipLevels-1,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
}
};
VkDependencyInfo const transferToReadyDependency = {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pNext = nullptr,
.dependencyFlags = 0,
.memoryBarrierCount = 0,
.pMemoryBarriers = nullptr,
.bufferMemoryBarrierCount = 0,
.pBufferMemoryBarriers = nullptr,
.imageMemoryBarrierCount = static_cast<uint32_t>( transferToReadyImageBarriers.size() ),
.pImageMemoryBarriers = transferToReadyImageBarriers.data(),
};
VkImageSubresourceRange const mipLevelSubresource = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
};
std::array prepareNextMipLevelBarriers{
// prepareNextMipLevelSrcImageBarrier
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_TRANSFER_BIT,
.dstAccessMask = VK_ACCESS_2_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = mipLevelSubresource,
},
// prepareNextMipLevelDstImageBarrier
VkImageMemoryBarrier2{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER_2,
.pNext = nullptr,
.srcStageMask = VK_PIPELINE_STAGE_2_COPY_BIT,
.srcAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.dstStageMask = VK_PIPELINE_STAGE_2_BLIT_BIT,
.dstAccessMask = VK_ACCESS_2_TRANSFER_WRITE_BIT,
.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.newLayout = VK_IMAGE_LAYOUT_UNDEFINED,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = textureImage,
.subresourceRange = mipLevelSubresource,
}
};
VkDependencyInfo const prepareNextMipLevelDependency = {
.sType = VK_STRUCTURE_TYPE_DEPENDENCY_INFO,
.pNext = nullptr,
.dependencyFlags = 0,
.memoryBarrierCount = 0,
.pMemoryBarriers = nullptr,
.bufferMemoryBarrierCount = 0,
.pBufferMemoryBarriers = nullptr,
.imageMemoryBarrierCount = static_cast<uint32_t>( prepareNextMipLevelBarriers.size() ),
.pImageMemoryBarriers = prepareNextMipLevelBarriers.data(),
};
vkBeginCommandBuffer( frameInUse.commandBuffer, &beginInfo );
{
VkImageSubresourceLayers imageSubresourceLayers = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
};
// TODO: Ensure `bufferRowLength` and `bufferImageHeight` are not required.
VkBufferImageCopy copyRegion = {
.bufferOffset = 0,
.bufferRowLength = 0,
.bufferImageHeight = 0,
.imageSubresource = imageSubresourceLayers,
.imageOffset = { 0, 0, 0 },
.imageExtent = { width, height, 1 }
};
// Start
vkCmdPipelineBarrier2( frameInUse.commandBuffer, &creationToTransferDependency );
// Staging -> Image L0
vkCmdCopyBufferToImage(
frameInUse.commandBuffer,
stagingBuffer,
textureImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
1,
&copyRegion );
prepareNextMipLevelBarriers[0].subresourceRange.baseMipLevel = 0;
prepareNextMipLevelBarriers[1].subresourceRange.baseMipLevel = 1;
int32_t mipSrcWidth = static_cast<int32_t>( width );
int32_t mipSrcHeight = static_cast<int32_t>( height );
int32_t mipDstWidth = std::max( mipSrcWidth / 2, 1 );
int32_t mipDstHeight = std::max( mipSrcHeight / 2, 1 );
VkImageSubresourceLayers constexpr mipSubresourceLayers = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
};
VkImageBlit2 imageBlit = {
.sType = VK_STRUCTURE_TYPE_IMAGE_BLIT_2,
.pNext = nullptr,
.srcSubresource = mipSubresourceLayers,
.srcOffsets = { { 0, 0, 0 }, { mipSrcWidth, mipSrcHeight, 1 } },
.dstSubresource = mipSubresourceLayers,
.dstOffsets = { { 0, 0, 0 }, { mipDstWidth, mipDstHeight, 1 } },
};
imageBlit.srcSubresource.mipLevel = 0;
imageBlit.dstSubresource.mipLevel = 1;
imageBlit.srcOffsets[1].x = mipSrcWidth;
imageBlit.srcOffsets[1].y = mipSrcHeight;
imageBlit.dstOffsets[1].x = mipDstWidth;
imageBlit.dstOffsets[1].y = mipDstHeight;
VkBlitImageInfo2 blitInfo = {
.sType = VK_STRUCTURE_TYPE_BLIT_IMAGE_INFO_2,
.pNext = nullptr,
.srcImage = textureImage,
.srcImageLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.dstImage = textureImage,
.dstImageLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.regionCount = 1,
.pRegions = &imageBlit,
.filter = VK_FILTER_LINEAR,
};
// MipMapping
for ( uint32_t dstMipLevel = 1; dstMipLevel < mipLevels; ++dstMipLevel )
{
vkCmdPipelineBarrier2( frameInUse.commandBuffer, &prepareNextMipLevelDependency );
vkCmdBlitImage2( frameInUse.commandBuffer, &blitInfo );
// Prep for NEXT iteration
mipSrcWidth = mipDstWidth;
mipSrcHeight = mipDstHeight;
mipDstWidth = std::max( mipSrcWidth / 2, 1 );
mipDstHeight = std::max( mipSrcHeight / 2, 1 );
imageBlit.srcSubresource.mipLevel = dstMipLevel;
imageBlit.dstSubresource.mipLevel = dstMipLevel + 1;
imageBlit.srcOffsets[1].x = mipSrcWidth;
imageBlit.srcOffsets[1].y = mipSrcHeight;
imageBlit.dstOffsets[1].x = mipDstWidth;
imageBlit.dstOffsets[1].y = mipDstHeight;
// Prep current mip level as source
prepareNextMipLevelBarriers[0].subresourceRange.baseMipLevel = dstMipLevel;
prepareNextMipLevelBarriers[1].subresourceRange.baseMipLevel = dstMipLevel + 1;
}
// End
vkCmdPipelineBarrier2( frameInUse.commandBuffer, &transferToReadyDependency );
}
vkEndCommandBuffer( frameInUse.commandBuffer );
VkSubmitInfo submitInfo = {
.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO,
.pNext = nullptr,
.waitSemaphoreCount = 0,
.pWaitSemaphores = nullptr,
.pWaitDstStageMask = nullptr,
.commandBufferCount = 1,
.pCommandBuffers = &frameInUse.commandBuffer,
.signalSemaphoreCount = 0,
.pSignalSemaphores = nullptr,
};
VK_CHECK( vkQueueSubmit( renderDevice->directQueue, 1, &submitInfo, frameInUse.frameReadyToReuse ) );
// Do not reset this. Else, the frame will never be available to the main loop.
VK_CHECK( vkWaitForFences( renderDevice->device, 1, &frameInUse.frameReadyToReuse, VK_TRUE, UINT64_MAX ) );
renderDevice->frameIndex = ( renderDevice->frameIndex + 1 ) % renderDevice->getNumFrames();
}
vmaDestroyBuffer( renderDevice->gpuAllocator, stagingBuffer, stagingAllocation );
}
}
float const metallic = material.pbr_metallic_roughness.metallic_factor;
float const roughness = material.pbr_metallic_roughness.roughness_factor;
uint32_t const materialIdx = static_cast<uint32_t>( model->materials.size() );
model->materials.push_back( { sampler, std::move( baseColorTexture ), {}, roughness, metallic, baseColorFactor } );
return materialIdx;
}
ModelMesh ProcessMesh(
RenderDevice* renderDevice,
Model* model,
std::pmr::vector<Vertex>* pVertices,
std::pmr::vector<uint32_t>* pIndices,
cgltf_mesh const& mesh )
{
using namespace std::string_view_literals;
uint32_t const primitiveStart = static_cast<uint32_t>( model->primitives.size() );
uint32_t const primitiveCount = static_cast<uint32_t>( mesh.primitives_count );
cgltf_primitive const* primitives = mesh.primitives;
for ( uint32_t primitiveIndex = 0; primitiveIndex < mesh.primitives_count; ++primitiveIndex )
{
// VertexStart is per-primitive
int32_t const vertexStart = static_cast<int32_t>( pVertices->size() );
cgltf_primitive const& primitive = primitives[primitiveIndex];
ASSERT( primitive.type == cgltf_primitive_type_triangles );
// Index Buffer
size_t const indexStart = pIndices->size();
size_t const indexCount = cgltf_accessor_unpack_indices( primitive.indices, nullptr, sizeof pIndices->at( 0 ), 0 );
ASSERT( indexCount > 0 );
pIndices->resize( indexStart + indexCount );
cgltf_accessor_unpack_indices(
primitive.indices, pIndices->data() + indexStart, sizeof pIndices->at( 0 ), indexCount );
// Material
uint32_t materialIdx = UINT32_MAX;
if ( primitive.material )
{
materialIdx = ProcessMaterial( renderDevice, model, *primitive.material );
}
model->primitives.push_back( Primitive{
.indexStart = static_cast<uint32_t>( indexStart ),
.indexCount = static_cast<uint32_t>( indexCount ),
.material = materialIdx,
.vertexOffset = vertexStart,
} );
cgltf_attribute const* attributes = primitive.attributes;
for ( uint32_t attribIndex = 0; attribIndex < primitive.attributes_count; ++attribIndex )
{
if ( "POSITION"sv == attributes[attribIndex].name )
{
cgltf_attribute const& positionAttr = attributes[attribIndex];
ASSERT( positionAttr.data->component_type == cgltf_component_type_r_32f );
ASSERT( positionAttr.data->type == cgltf_type_vec3 );
std::pmr::vector<DirectX::XMFLOAT3> positions{ pVertices->get_allocator() };
size_t const floatCount = cgltf_accessor_unpack_floats( positionAttr.data, nullptr, 0 );
positions.resize( floatCount / 3 );
cgltf_accessor_unpack_floats(
positionAttr.data, reinterpret_cast<cgltf_float*>( positions.data() ), floatCount );
// Guaranteed to have space for these vertices.
pVertices->resize( vertexStart + positions.size() );
auto vertexIter = pVertices->begin() + vertexStart;
for ( DirectX::XMFLOAT3 const& position : positions )
{
vertexIter->position = position;
++vertexIter;
}
}
if ( "NORMAL"sv == attributes[attribIndex].name )
{
cgltf_attribute const& normalAttr = attributes[attribIndex];
ASSERT( normalAttr.data->component_type == cgltf_component_type_r_32f );
ASSERT( normalAttr.data->type == cgltf_type_vec3 );
std::pmr::vector<DirectX::XMFLOAT3> normals{ pVertices->get_allocator() };
size_t const floatCount = cgltf_accessor_unpack_floats( normalAttr.data, nullptr, 0 );
normals.resize( floatCount / 3 );
cgltf_accessor_unpack_floats( normalAttr.data, reinterpret_cast<cgltf_float*>( normals.data() ), floatCount );
// Guaranteed to have space for these vertices.
pVertices->resize( vertexStart + normals.size() );
auto vertexIter = pVertices->begin() + vertexStart;
for ( DirectX::XMFLOAT3 const& normal : normals )
{
vertexIter->normal = normal;
++vertexIter;
}
}
if ( "TEXCOORD_0"sv == attributes[attribIndex].name )
{
cgltf_attribute const& texCoordAttr = attributes[attribIndex];
ASSERT( texCoordAttr.data->component_type == cgltf_component_type_r_32f );
ASSERT( texCoordAttr.data->type == cgltf_type_vec2 );
std::pmr::vector<DirectX::XMFLOAT2> texCoords{ pVertices->get_allocator() };
size_t const floatCount = cgltf_accessor_unpack_floats( texCoordAttr.data, nullptr, 0 );
texCoords.resize( floatCount / 2 );
cgltf_accessor_unpack_floats(
texCoordAttr.data, reinterpret_cast<cgltf_float*>( texCoords.data() ), floatCount );
// Guaranteed to have space for these vertices.
pVertices->resize( vertexStart + texCoords.size() );
auto vertexIter = pVertices->begin() + vertexStart;
for ( DirectX::XMFLOAT2 const& texCoord : texCoords )
{
vertexIter->texCoord0 = texCoord;
++vertexIter;
}
}
if ( "TEXCOORD_1"sv == attributes[attribIndex].name )
{
cgltf_attribute const& texCoordAttr = attributes[attribIndex];
ASSERT( texCoordAttr.data->component_type == cgltf_component_type_r_32f );
ASSERT( texCoordAttr.data->type == cgltf_type_vec2 );
std::pmr::vector<DirectX::XMFLOAT2> texCoords{ pVertices->get_allocator() };
size_t const floatCount = cgltf_accessor_unpack_floats( texCoordAttr.data, nullptr, 0 );
texCoords.resize( floatCount / 2 );
cgltf_accessor_unpack_floats(
texCoordAttr.data, reinterpret_cast<cgltf_float*>( texCoords.data() ), floatCount );
// Guaranteed to have space for these vertices.
pVertices->resize( vertexStart + texCoords.size() );
auto vertexIter = pVertices->begin() + vertexStart;
for ( DirectX::XMFLOAT2 const& texCoord : texCoords )
{
vertexIter->texCoord1 = texCoord;
++vertexIter;
}
}
if ( "COLOR_0"sv == attributes[attribIndex].name )
{
cgltf_attribute const& colorAttr = attributes[attribIndex];
ASSERT( colorAttr.data->component_type == cgltf_component_type_r_32f );
ASSERT( colorAttr.data->type == cgltf_type_vec3 or colorAttr.data->type == cgltf_type_vec4 );
if ( colorAttr.data->type == cgltf_type_vec3 )
{
std::pmr::vector<DirectX::XMFLOAT3> colors{ pVertices->get_allocator() };
size_t const floatCount = cgltf_accessor_unpack_floats( colorAttr.data, nullptr, 0 );
colors.resize( floatCount / 3 );
cgltf_accessor_unpack_floats( colorAttr.data, reinterpret_cast<cgltf_float*>( colors.data() ), floatCount );
// Guaranteed to have space for these vertices.
pVertices->resize( vertexStart + colors.size() );
auto vertexIter = pVertices->begin() + vertexStart;
for ( DirectX::XMFLOAT3 const& color : colors )
{
vertexIter->color0 = { color.x, color.y, color.z, 1.0f };
++vertexIter;
}
}
else // Since only two options
{
std::pmr::vector<DirectX::XMFLOAT4> colors{ pVertices->get_allocator() };
size_t const floatCount = cgltf_accessor_unpack_floats( colorAttr.data, nullptr, 0 );
colors.resize( floatCount / 4 );
cgltf_accessor_unpack_floats( colorAttr.data, reinterpret_cast<cgltf_float*>( colors.data() ), floatCount );
// Guaranteed to have space for these vertices.
pVertices->resize( vertexStart + colors.size() );
auto vertexIter = pVertices->begin() + vertexStart;
for ( DirectX::XMFLOAT4 const& color : colors )
{
vertexIter->color0 = color;
++vertexIter;
}
}
}
// TODO: Grab other attributes.
}
}
return { primitiveStart, primitiveCount };
}
Entity* ProcessNode(
RenderDevice* renderDevice,
EntityManager* entityManager,
Model* model,
std::pmr::vector<Vertex>* vertices,
std::pmr::vector<uint32_t>* indices,
cgltf_node const& node )
{
DirectX::XMVECTOR vTranslation;
DirectX::XMVECTOR qRotation;
DirectX::XMVECTOR vScale;
if ( node.has_matrix )
{
DirectX::XMMATRIX const mat = DirectX::XMMATRIX{ node.matrix };
ASSERT( DirectX::XMMatrixDecompose( &vScale, &qRotation, &vTranslation, mat ) );
}
else
{
vTranslation = node.has_translation
? DirectX::XMVectorSet( node.translation[0], node.translation[1], node.translation[2], 1.0f )
: DirectX::XMVectorZero();
qRotation = node.has_rotation
? DirectX::XMVectorSet( node.rotation[0], node.rotation[1], node.rotation[2], node.rotation[3] )
: DirectX::XMQuaternionIdentity();
vScale = node.has_scale ? DirectX::XMVectorSet( node.scale[0], node.scale[1], node.scale[2], 1.0f )
: DirectX::XMVectorSplatOne();
}
auto tx = Transform{
.translation = vTranslation,
.rotation = qRotation,
.scale = vScale,
};
Entity* entity = entityManager->createEntity( tx );
if ( node.mesh )
{
entity->modelMesh = ProcessMesh( renderDevice, model, vertices, indices, *node.mesh );
}
for ( uint32_t childIdx = 0; childIdx < node.children_count; ++childIdx )
{
entity->addChild( ProcessNode( renderDevice, entityManager, model, vertices, indices, *node.children[childIdx] ) );
}
return entity;
}
Entity* LoadModel( RenderDevice* renderDevice, EntityManager* entityManager, const char* filename )
{
cgltf_data* gltfModel = nullptr;
cgltf_options options = {};
cgltf_result result = cgltf_parse_file( &options, filename, &gltfModel );
if ( result != cgltf_result_success )
{
SDL_LogError( SDL_LOG_CATEGORY_APPLICATION, "%s failed to load", filename );
cgltf_free( gltfModel );
return nullptr;
}
result = cgltf_validate( gltfModel );
if ( result != cgltf_result_success )
{
SDL_LogError( SDL_LOG_CATEGORY_APPLICATION, "%s is invalid.", filename );
cgltf_free( gltfModel );
return nullptr;
}
result = cgltf_load_buffers( &options, gltfModel, filename );
if ( result != cgltf_result_success )
{
SDL_LogError( SDL_LOG_CATEGORY_APPLICATION, "%s buffers failed to load.", filename );
cgltf_free( gltfModel );
return nullptr;
}
Entity* entity = entityManager->createEntity( {
.translation = DirectX::XMVectorZero(),
.rotation = DirectX::XMQuaternionIdentity(),
.scale = DirectX::XMVectorSplatOne(),
} );
// Output data
std::pmr::vector<Vertex> vertices;
std::pmr::vector<uint32_t> indices;
cgltf_scene const* currentScene = gltfModel->scene;
for ( uint32_t nodeIdx = 0; nodeIdx < currentScene->nodes_count; ++nodeIdx )
{
entity->addChild( ProcessNode(
renderDevice, entityManager, &entity->model, &vertices, &indices, *currentScene->nodes[nodeIdx] ) );
}
auto vertexBuffer = renderDevice->bufferManager->createVertexBuffer( vertices.size() * sizeof vertices[0] );
if ( not vertexBuffer )
{
return nullptr;
}
entity->model.vertexBuffer = std::move( vertexBuffer.value() );
renderDevice->bufferManager->writeToBuffer( entity->model.vertexBuffer, std::span{ vertices } );
auto indexBuffer = renderDevice->bufferManager->createIndexBuffer( indices.size() * sizeof indices[0] );
if ( not indexBuffer )
{
return nullptr;
}
entity->model.indexBuffer = std::move( indexBuffer.value() );
renderDevice->bufferManager->writeToBuffer( entity->model.indexBuffer, std::span{ indices } );
cgltf_free( gltfModel );
return entity;
}

82
Blaze/ModelLoader.h Normal file
View File

@ -0,0 +1,82 @@
#pragma once
#include <DirectXMath.h>
#include <memory_resource>
#include <vector>
#include "BufferManager.h"
#include "TextureManager.h"
struct RenderDevice;
struct EntityManager;
struct Entity;
struct GlobalMemory;
struct Vertex
{
DirectX::XMFLOAT3 position = { 0.0f, 0.0f, 0.0f };
DirectX::XMFLOAT3 normal = { 1.0f, 1.0f, 1.0f };
DirectX::XMFLOAT2 texCoord0 = { 0.0f, 0.0f };
DirectX::XMFLOAT2 texCoord1 = { 0.0f, 0.0f };
DirectX::XMFLOAT4 color0 = { 1.0f, 1.0f, 1.0f, 1.0f };
};
struct Primitive
{
uint32_t indexStart;
uint32_t indexCount;
uint32_t material;
int32_t vertexOffset;
};
struct ModelMesh
{
uint32_t primitiveStart = 0;
uint32_t primitiveCount = 0;
[[nodiscard]] bool isNull() const
{
return primitiveCount == 0;
}
};
struct Material
{
constexpr static size_t GPU_DATA_OFFSET = sizeof( VkSampler );
constexpr static size_t GPU_DATA_SIZE =
sizeof( TextureID ) + sizeof( uint32_t ) + 2 * sizeof( float ) + sizeof( DirectX::XMFLOAT4 );
VkSampler sampler; // TODO: Reuse
// To copy directly.
TextureID texture;
uint32_t padding0; // FIXME: Wasting space.
float roughness = 1.0f;
float metallic = 1.0f;
DirectX::XMFLOAT4 baseColor = { 1.0f, 1.0f, 1.0f, 1.0f };
[[nodiscard]] bool isNull() const
{
return texture.isNull() or sampler;
}
};
static_assert( sizeof( Material ) == Material::GPU_DATA_OFFSET + Material::GPU_DATA_SIZE );
static constexpr Material DEFAULT_MATERIAL = {};
struct Model
{
std::pmr::monotonic_buffer_resource mem;
BufferID vertexBuffer;
BufferID indexBuffer;
std::pmr::vector<Material> materials;
std::pmr::vector<Primitive> primitives;
[[nodiscard]] bool isNull() const
{
return vertexBuffer.isNull();
}
};
Entity* LoadModel( RenderDevice* renderDevice, EntityManager* entityManager, const char* filename );

View File

@ -22,6 +22,11 @@ public:
RID( RID&& other ) noexcept; RID( RID&& other ) noexcept;
RID& operator=( RID&& other ) noexcept; RID& operator=( RID&& other ) noexcept;
[[nodiscard]] bool isNull() const
{
return m_index == 0;
}
static RID null() static RID null()
{ {
return {}; return {};

View File

@ -17,10 +17,10 @@
- [X] Create a Triangle - [X] Create a Triangle
- [X] Create pipeline - [X] Create pipeline
- [X] Draw - [X] Draw
- [ ] Create a Box - [X] Create a Box
- [ ] Create Vertex buffer - [X] Create Vertex buffer
- [ ] Load texture - [X] Load texture
- [ ] Draw - [X] Draw
- [ ] Refactor - [ ] Refactor
## Features ## Features