// ============================================= // Aster: model_render.cpp // Copyright (c) 2020-2024 Anish Bhobe // ============================================= #include "aster/aster.h" #include "aster/core/buffer.h" #include "aster/core/constants.h" #include "aster/core/context.h" #include "aster/core/device.h" #include "aster/core/image.h" #include "aster/core/physical_device.h" #include "aster/core/pipeline.h" #include "aster/core/swapchain.h" #include "aster/core/window.h" #include "asset_loader.h" #include "frame.h" #include "helpers.h" #include "light_manager.h" #include "aster/systems/buffer_manager.h" #include "gui.h" #include "ibl_helpers.h" #include "pipeline_utils.h" #include #include #include #include #include constexpr u32 MAX_FRAMES_IN_FLIGHT = 3; constexpr auto PIPELINE_CACHE_FILE = "PipelineCacheData.bin"; constexpr auto MODEL_FILE = "model/DamagedHelmet.glb"; constexpr auto BACKDROP_FILE = "image/photo_studio_loft_hall_4k.hdr"; constexpr u32 INIT_WIDTH = 1280; constexpr u32 INIT_HEIGHT = 720; struct Camera { mat4 m_View; mat4 m_Perspective; mat4 m_InverseView; mat4 m_InversePerspective; vec3 m_Position; f32 m_PositionHomogenousPad_ = 1.0f; void CalculateInverses() { m_InverseView = inverse(m_View); m_InversePerspective = inverse(m_Perspective); } }; struct CameraController { constexpr static vec3 UP = vec3(0.0f, 1.0f, 0.0f); f32 m_Fov; f32 m_Pitch; f32 m_Yaw; f32 m_AspectRatio; Camera m_Camera; CameraController(const vec3 &position, const vec3 &target, const f32 vFov, const f32 aspectRatio) : m_Fov(vFov) , m_Pitch{0.0f} , m_Yaw{0.0f} , m_AspectRatio{aspectRatio} , m_Camera{ .m_View = lookAt(position, target, UP), .m_Perspective = glm::perspective(vFov, aspectRatio, 0.1f, 100.0f), .m_Position = position, } { const vec3 dir = normalize(target - vec3(position)); m_Pitch = asin(dir.y); m_Yaw = acos(-dir.z / sqrt(1.0f - dir.y * dir.y)); m_Camera.CalculateInverses(); } void SetAspectRatio(const f32 aspectRatio) { m_AspectRatio = aspectRatio; m_Camera.m_Perspective = glm::perspective(m_Fov, aspectRatio, 0.1f, 100.0f); m_Camera.CalculateInverses(); } void SetPosition(const vec3 &position) { m_Camera.m_Position = vec4(position, 1.0f); f32 cosPitch = cos(m_Pitch); const vec3 target = vec3(sin(m_Yaw) * cosPitch, sin(m_Pitch), -cos(m_Yaw) * cosPitch); m_Camera.m_View = lookAt(position, position + target, UP); m_Camera.CalculateInverses(); } void SetPitchYaw(f32 pitch, f32 yaw) { m_Pitch = pitch; m_Yaw = yaw; f32 cosPitch = cos(m_Pitch); const vec3 target = vec3(sin(m_Yaw) * cosPitch, sin(m_Pitch), -cos(m_Yaw) * cosPitch); const vec3 position = m_Camera.m_Position; m_Camera.m_View = lookAt(position, position + target, UP); m_Camera.CalculateInverses(); } void SetLookAt(const vec3 &target) { const vec3 dir = normalize(target - m_Camera.m_Position); m_Pitch = acos(dir.y); m_Yaw = acos(dir.z / sqrt(1.0f - dir.y * dir.y)); m_Camera.m_View = lookAt(m_Camera.m_Position, m_Camera.m_Position + target, UP); m_Camera.CalculateInverses(); } }; int main(int, char **) { MIN_LOG_LEVEL(Logger::LogType::eInfo); Window window = {"ModelRender (Aster)", {INIT_WIDTH, INIT_HEIGHT}}; Context context = {"ModelRender", VERSION}; Surface surface = {&context, &window, "Primary Surface"}; PhysicalDevices physicalDevices = {&surface, &context}; PhysicalDevice deviceToUse = FindSuitableDevice(physicalDevices); usize physicalDeviceOffsetAlignment = deviceToUse.m_DeviceProperties.limits.minUniformBufferOffsetAlignment; INFO("Using {} as the primary device.", deviceToUse.m_DeviceProperties.deviceName.data()); Features enabledDeviceFeatures = { .m_Vulkan10Features = {.samplerAnisotropy = true}, .m_Vulkan12Features = { .descriptorIndexing = true, .shaderSampledImageArrayNonUniformIndexing = true, .shaderStorageBufferArrayNonUniformIndexing = true, .shaderStorageImageArrayNonUniformIndexing = true, .descriptorBindingUniformBufferUpdateAfterBind = true, // Not related to Bindless .descriptorBindingSampledImageUpdateAfterBind = true, .descriptorBindingStorageImageUpdateAfterBind = true, .descriptorBindingStorageBufferUpdateAfterBind = true, .descriptorBindingPartiallyBound = true, .runtimeDescriptorArray = true, .bufferDeviceAddress = true, .bufferDeviceAddressCaptureReplay = true, }, .m_Vulkan13Features = { .synchronization2 = true, .dynamicRendering = true, }, }; auto pipelineCacheData = ReadFileBytes(PIPELINE_CACHE_FILE, false); QueueAllocation queueAllocation = FindAppropriateQueueAllocation(&deviceToUse); Device device = {&context, &deviceToUse, &enabledDeviceFeatures, {queueAllocation}, pipelineCacheData, "Primary Device"}; vk::Queue graphicsQueue = device.GetQueue(queueAllocation.m_Family, 0); Swapchain swapchain = {&surface, &device, window.GetSize(), "Primary Chain"}; systems::ResourceManager resourceManager = {&device, 1000, 1000, 10, 1000}; systems::CommitManager commitManager = {&device, 1000, 1000, 1000, resourceManager.Samplers().CreateSampler({})}; AssetLoader assetLoader = {&resourceManager, &commitManager, graphicsQueue, queueAllocation.m_Family, queueAllocation.m_Family}; LightManager lightManager = LightManager{&resourceManager, &commitManager}; Model model = assetLoader.LoadModelToGpu(MODEL_FILE); auto environmentHdri = assetLoader.LoadHdrImage(BACKDROP_FILE); auto envHdriHandle = commitManager.CommitTexture(environmentHdri); auto environment = CreateCubeFromHdrEnv(&assetLoader, graphicsQueue, 512, envHdriHandle, "Cube Env"); vk::Format attachmentFormat = vk::Format::eR8G8B8A8Srgb; Pipeline pipeline = CreatePipeline(&device, attachmentFormat, &commitManager); Pipeline backGroundPipeline = CreateBackgroundPipeline(&device, attachmentFormat, &commitManager); lightManager.AddPoint(vec3{-5.0f, -5.0f, 5.0f}, vec3{1.0f}, 30.0f, 16.0f); lightManager.AddPoint(vec3{5.0f, -5.0f, 5.0f}, vec3{1.0f}, 30.0f, 16.0f); lightManager.AddPoint(vec3{-5.0f, 5.0f, 5.0f}, vec3{1.0f}, 30.0f, 16.0f); lightManager.AddPoint(vec3{5.0f, 5.0f, 5.0f}, vec3{1.0f}, 30.0f, 16.0f); lightManager.Update(); vk::DescriptorPool descriptorPool; vk::DescriptorSet perFrameDescriptor; { vk::DescriptorSetLayout descriptorSetLayout = pipeline.m_SetLayouts[1]; eastl::array poolSizes = { vk::DescriptorPoolSize{ .type = vk::DescriptorType::eUniformBuffer, .descriptorCount = 3, }, }; vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo = { .maxSets = 1, .poolSizeCount = Cast(poolSizes.size()), .pPoolSizes = poolSizes.data()}; AbortIfFailed(device.m_Device.createDescriptorPool(&descriptorPoolCreateInfo, nullptr, &descriptorPool)); vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo = { .descriptorPool = descriptorPool, .descriptorSetCount = 1, .pSetLayouts = &descriptorSetLayout, }; AbortIfFailed(device.m_Device.allocateDescriptorSets(&descriptorSetAllocateInfo, &perFrameDescriptor)); } vk::Extent2D internalResolution = {1920, 1080}; CameraController cameraController = {vec3{0.0f, 0.0f, 2.0f}, vec3{0.0f}, 70_deg, Cast(swapchain.m_Extent.width) / Cast(swapchain.m_Extent.height)}; usize uboSize = 0; usize cameraSize = sizeof cameraController.m_Camera; uboSize += ClosestMultiple(cameraSize, physicalDeviceOffsetAlignment); usize lightOffset = uboSize; usize lightingSize = sizeof environment + sizeof lightManager.m_MetaInfo; uboSize += ClosestMultiple(lightingSize, physicalDeviceOffsetAlignment); u8 *data = new u8[uboSize]; memcpy(data, &cameraController.m_Camera, cameraSize); memcpy(data + lightOffset, &environment, sizeof environment); memcpy(data + lightOffset + sizeof environment, &lightManager.m_MetaInfo, sizeof lightManager.m_MetaInfo); auto ubo = resourceManager.Buffers().CreateUniformBuffer(uboSize, "Desc1 UBO"); ubo->Write(0, ubo->m_Size, data); delete[] data; vk::DescriptorBufferInfo cameraBufferInfo = { .buffer = ubo->m_Buffer, .offset = 0, .range = cameraSize, }; vk::DescriptorBufferInfo lightingBufferInfo = { .buffer = ubo->m_Buffer, .offset = lightOffset, .range = lightingSize, }; eastl::array writeDescriptors = { vk::WriteDescriptorSet{ .dstSet = perFrameDescriptor, .dstBinding = 0, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = vk::DescriptorType::eUniformBuffer, .pBufferInfo = &cameraBufferInfo, }, vk::WriteDescriptorSet{ .dstSet = perFrameDescriptor, .dstBinding = 1, .dstArrayElement = 0, .descriptorCount = 1, .descriptorType = vk::DescriptorType::eUniformBuffer, .pBufferInfo = &lightingBufferInfo, }, }; device.m_Device.updateDescriptorSets(Cast(writeDescriptors.size()), writeDescriptors.data(), 0, nullptr); commitManager.Update(); // Persistent variables vk::Viewport viewport = { .x = 0, .y = Cast(internalResolution.height), .width = Cast(internalResolution.width), .height = -Cast(internalResolution.height), .minDepth = 0.0, .maxDepth = 1.0, }; vk::Rect2D scissor = { .offset = {0, 0}, .extent = internalResolution, }; vk::ImageSubresourceRange subresourceRange = { .aspectMask = vk::ImageAspectFlagBits::eColor, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1, }; vk::ImageMemoryBarrier2 preRenderBarrier = { .srcStageMask = vk::PipelineStageFlagBits2::eTopOfPipe, .srcAccessMask = vk::AccessFlagBits2::eNone, .dstStageMask = vk::PipelineStageFlagBits2::eColorAttachmentOutput, .dstAccessMask = vk::AccessFlagBits2::eColorAttachmentWrite, .oldLayout = vk::ImageLayout::eUndefined, .newLayout = vk::ImageLayout::eColorAttachmentOptimal, .srcQueueFamilyIndex = queueAllocation.m_Family, .dstQueueFamilyIndex = queueAllocation.m_Family, .subresourceRange = subresourceRange, }; vk::DependencyInfo preRenderDependencies = { .imageMemoryBarrierCount = 1, .pImageMemoryBarriers = &preRenderBarrier, }; vk::ImageMemoryBarrier2 renderToBlitBarrier = { .srcStageMask = vk::PipelineStageFlagBits2::eColorAttachmentOutput, .srcAccessMask = vk::AccessFlagBits2::eColorAttachmentWrite, .dstStageMask = vk::PipelineStageFlagBits2::eAllTransfer, .dstAccessMask = vk::AccessFlagBits2::eTransferRead, .oldLayout = vk::ImageLayout::eColorAttachmentOptimal, .newLayout = vk::ImageLayout::eTransferSrcOptimal, .srcQueueFamilyIndex = queueAllocation.m_Family, .dstQueueFamilyIndex = queueAllocation.m_Family, .subresourceRange = subresourceRange, }; vk::ImageMemoryBarrier2 acquireToTransferDstBarrier = { .srcStageMask = vk::PipelineStageFlagBits2::eTopOfPipe, .srcAccessMask = vk::AccessFlagBits2::eNone, .dstStageMask = vk::PipelineStageFlagBits2::eAllTransfer, .dstAccessMask = vk::AccessFlagBits2::eTransferWrite, .oldLayout = vk::ImageLayout::eUndefined, .newLayout = vk::ImageLayout::eTransferDstOptimal, .srcQueueFamilyIndex = queueAllocation.m_Family, .dstQueueFamilyIndex = queueAllocation.m_Family, .subresourceRange = subresourceRange, }; eastl::array postRenderBarriers = { renderToBlitBarrier, acquireToTransferDstBarrier, }; vk::DependencyInfo postRenderDependencies = { .imageMemoryBarrierCount = Cast(postRenderBarriers.size()), .pImageMemoryBarriers = postRenderBarriers.data(), }; vk::ImageMemoryBarrier2 transferDstToGuiRenderBarrier = { .srcStageMask = vk::PipelineStageFlagBits2::eAllTransfer, .srcAccessMask = vk::AccessFlagBits2::eTransferWrite, .dstStageMask = vk::PipelineStageFlagBits2::eColorAttachmentOutput, .dstAccessMask = vk::AccessFlagBits2::eColorAttachmentWrite, .oldLayout = vk::ImageLayout::eTransferDstOptimal, .newLayout = vk::ImageLayout::eColorAttachmentOptimal, .srcQueueFamilyIndex = queueAllocation.m_Family, .dstQueueFamilyIndex = queueAllocation.m_Family, .subresourceRange = subresourceRange, }; vk::DependencyInfo preGuiDependencies = { .imageMemoryBarrierCount = 1, .pImageMemoryBarriers = &transferDstToGuiRenderBarrier, }; vk::ImageMemoryBarrier2 prePresentBarrier = { .srcStageMask = vk::PipelineStageFlagBits2::eColorAttachmentOutput, .srcAccessMask = vk::AccessFlagBits2::eColorAttachmentWrite, .dstStageMask = vk::PipelineStageFlagBits2::eBottomOfPipe, .dstAccessMask = vk::AccessFlagBits2::eNone, .oldLayout = vk::ImageLayout::eColorAttachmentOptimal, .newLayout = vk::ImageLayout::ePresentSrcKHR, .srcQueueFamilyIndex = queueAllocation.m_Family, .dstQueueFamilyIndex = queueAllocation.m_Family, .subresourceRange = subresourceRange, }; vk::DependencyInfo prePresentDependencies = { .imageMemoryBarrierCount = 1, .pImageMemoryBarriers = &prePresentBarrier, }; FrameManager frameManager = {&device, queueAllocation.m_Family, MAX_FRAMES_IN_FLIGHT}; eastl::fixed_vector, MAX_FRAMES_IN_FLIGHT> depthImages; eastl::fixed_vector, MAX_FRAMES_IN_FLIGHT> attachmentImages; for (u32 index = 0; index < frameManager.m_FramesInFlight; ++index) { auto name = fmt::format("Depth Frame{}", index); depthImages.emplace_back(resourceManager.CombinedImageViews().CreateDepthStencilImage({ .m_Extent = internalResolution, .m_Name = name.c_str(), })); name = fmt::format("Attachment0 Frame{}", index); attachmentImages.emplace_back(resourceManager.CombinedImageViews().CreateAttachment({ .m_Format = attachmentFormat, .m_Extent = internalResolution, .m_Name = name.c_str(), })); } gui::Init(&context, &device, &window, swapchain.m_Format, Cast(swapchain.m_ImageViews.size()), queueAllocation.m_Family, graphicsQueue); bool rotating = false; bool lockToScreen = true; bool showDiffuse = false; bool useDiffuse = true; bool showPrefilter = false; bool useSpecular = true; constexpr static u32 USE_DIFFUSE_BIT = 1; constexpr static u32 USE_SPECULAR_BIT = 1 << 1; constexpr static u32 SHOW_DIFFUSE_BIT = 1 << 2; constexpr static u32 SHOW_PREFILTER_BIT = 1 << 3; i32 height = Cast(internalResolution.height); f32 camPitch = glm::degrees(cameraController.m_Pitch); f32 camYaw = glm::degrees(cameraController.m_Yaw); vec3 camPosition = cameraController.m_Camera.m_Position; vk::Extent2D inputResolution = internalResolution; swapchain.RegisterResizeCallback([&cameraController](vk::Extent2D extent) { cameraController.SetAspectRatio(Cast(extent.width) / Cast(extent.height)); }); Time::Init(); INFO("Starting loop"); while (window.Poll()) { Time::Update(); gui::StartBuild(); gui::Begin("Settings"); gui::Text("Window Resolution: %ux%u", swapchain.m_Extent.width, swapchain.m_Extent.height); gui::Text("Render Resolution: %ux%u", internalResolution.width, internalResolution.height); gui::Checkbox("Lock Resolution to Window", &lockToScreen); if (!lockToScreen) { if (gui::InputInt("FrameBuffer Height", &height, 1, 10)) { height = eastl::clamp(height, 64, 4320); } inputResolution.height = height; inputResolution.width = Cast(cameraController.m_AspectRatio * Cast(inputResolution.height)); if (gui::Button("Change Resolution")) { if (inputResolution.width != internalResolution.width || inputResolution.height != internalResolution.height) { internalResolution = inputResolution; viewport.width = Cast(internalResolution.width); viewport.height = -Cast(internalResolution.height); viewport.y = Cast(internalResolution.height); scissor.extent = internalResolution; } } } else { if (swapchain.m_Extent.width != internalResolution.width || swapchain.m_Extent.height != internalResolution.height) { internalResolution = swapchain.m_Extent; viewport.width = Cast(internalResolution.width); viewport.height = -Cast(internalResolution.height); viewport.y = Cast(internalResolution.height); scissor.extent = internalResolution; } } gui::Separator(); gui::Text("Delta: %0.6f ms", 1000.0f * Time::m_Delta); gui::Text("FPS: %0.6f", 1.0f / Time::m_Delta); gui::Separator(); gui::PushItemWidth(100); bool yawChange = gui::DragFloat("Camera Yaw", &camYaw); bool pitchChange = gui::DragFloat("Camera Pitch", &camPitch, 1, -89.0f, 89.0f); if (yawChange || pitchChange) { camYaw = camYaw - floor((camYaw + 180.0f) / 360.0f) * 360.0f; cameraController.SetPitchYaw(glm::radians(camPitch), glm::radians(camYaw)); } if (gui::InputFloat3("Camera Position", Recast(&camPosition))) { cameraController.SetPosition(camPosition); } gui::Separator(); gui::Text("IBL"); gui::Checkbox("Show DiffIrr", &showDiffuse); gui::Checkbox("Use DiffIrr", &useDiffuse); gui::Checkbox("Show Prefilter", &showPrefilter); gui::Checkbox("Use Specular", &useSpecular); gui::Separator(); gui::Checkbox("Rotate", &rotating); gui::PopItemWidth(); if (gui::Button("Exit")) { window.RequestExit(); } gui::End(); gui::EndBuild(); if (rotating) { model.SetModelTransform( rotate(model.GetModelTransform(), Cast(45.0_deg * Time::m_Delta), vec3(0.0f, 1.0f, 0.0f))); } model.Update(); cameraController.m_Camera.CalculateInverses(); ubo->Write(0, sizeof cameraController.m_Camera, &cameraController.m_Camera); Frame *currentFrame = frameManager.GetNextFrame(&swapchain, &surface, window.GetSize()); u32 imageIndex = currentFrame->m_ImageIdx; vk::Image currentSwapchainImage = swapchain.m_Images[imageIndex]; vk::ImageView currentSwapchainImageView = swapchain.m_ImageViews[imageIndex]; vk::CommandBuffer cmd = currentFrame->m_CommandBuffer; auto& currentDepthImage = depthImages[currentFrame->m_FrameIdx]; auto& currentAttachment = attachmentImages[currentFrame->m_FrameIdx]; if (currentAttachment->m_Extent.width != internalResolution.width || currentAttachment->m_Extent.height != internalResolution.height) { auto name = fmt::format("Depth Frame{}", currentFrame->m_FrameIdx); currentDepthImage = resourceManager.CombinedImageViews().CreateDepthStencilImage({ .m_Extent = internalResolution, .m_Name = name.c_str(), }); name = fmt::format("Attachment0 Frame{}", currentFrame->m_FrameIdx); currentAttachment = resourceManager.CombinedImageViews().CreateAttachment({ .m_Format = attachmentFormat, .m_Extent = internalResolution, .m_Name = name.c_str(), }); } vk::ImageView currentDepthImageView = currentDepthImage->m_View; vk::Image currentImage = currentAttachment->m_Image->m_Image; vk::ImageView currentImageView = currentAttachment->m_View; preRenderBarrier.image = currentImage; postRenderBarriers[0].image = currentImage; postRenderBarriers[1].image = currentSwapchainImage; transferDstToGuiRenderBarrier.image = currentSwapchainImage; prePresentBarrier.image = currentSwapchainImage; vk::CommandBufferBeginInfo beginInfo = {.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit}; AbortIfFailed(cmd.begin(&beginInfo)); cmd.pipelineBarrier2(&preRenderDependencies); // Render eastl::array attachmentInfos = { vk::RenderingAttachmentInfo{ .imageView = currentImageView, .imageLayout = vk::ImageLayout::eColorAttachmentOptimal, .resolveMode = vk::ResolveModeFlagBits::eNone, .loadOp = vk::AttachmentLoadOp::eClear, .storeOp = vk::AttachmentStoreOp::eStore, .clearValue = vk::ClearColorValue{0.0f, 0.0f, 0.0f, 1.0f}, }, }; vk::RenderingAttachmentInfo depthAttachment = { .imageView = currentDepthImageView, .imageLayout = vk::ImageLayout::eDepthAttachmentOptimal, .resolveMode = vk::ResolveModeFlagBits::eNone, .loadOp = vk::AttachmentLoadOp::eClear, .storeOp = vk::AttachmentStoreOp::eDontCare, .clearValue = vk::ClearDepthStencilValue{.depth = 1.0f, .stencil = 0}, }; vk::RenderingInfo renderingInfo = { .renderArea = {.extent = ToExtent2D(currentAttachment->m_Extent)}, .layerCount = 1, .colorAttachmentCount = Cast(attachmentInfos.size()), .pColorAttachments = attachmentInfos.data(), .pDepthAttachment = &depthAttachment, }; cmd.beginRendering(&renderingInfo); cmd.setViewport(0, 1, &viewport); cmd.setScissor(0, 1, &scissor); cmd.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipeline.m_Layout, 0, 1, &commitManager.GetDescriptorSet(), 0, nullptr); cmd.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipeline.m_Layout, 1, 1, &perFrameDescriptor, 0, nullptr); cmd.bindIndexBuffer(model.m_IndexBuffer->m_Buffer, 0, vk::IndexType::eUint32); cmd.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.m_Pipeline); u32 flags = 0; if (useSpecular) { flags |= USE_SPECULAR_BIT; } if (useDiffuse) { flags |= USE_DIFFUSE_BIT; } if (showPrefilter) { flags |= SHOW_PREFILTER_BIT; } if (showDiffuse) { flags |= SHOW_DIFFUSE_BIT; } u32 pcbOffset = 0; cmd.pushConstants(pipeline.m_Layout, vk::ShaderStageFlagBits::eAll, pcbOffset, sizeof model.m_Handles, &model.m_Handles); pcbOffset += sizeof model.m_Handles; cmd.pushConstants(pipeline.m_Layout, vk::ShaderStageFlagBits::eAll, pcbOffset, sizeof flags, &flags); pcbOffset += sizeof flags; for (auto &prim : model.m_MeshPrimitives) { u32 innerPcbOffset = pcbOffset; cmd.pushConstants(pipeline.m_Layout, vk::ShaderStageFlagBits::eAll, innerPcbOffset, sizeof prim.m_MaterialIdx, &prim.m_MaterialIdx); innerPcbOffset += sizeof prim.m_MaterialIdx; cmd.pushConstants(pipeline.m_Layout, vk::ShaderStageFlagBits::eAll, innerPcbOffset, sizeof prim.m_TransformIdx, &prim.m_TransformIdx); innerPcbOffset += sizeof prim.m_TransformIdx; cmd.drawIndexed(prim.m_IndexCount, 1, prim.m_FirstIndex, Cast(prim.m_VertexOffset), 0); } cmd.bindPipeline(vk::PipelineBindPoint::eGraphics, backGroundPipeline.m_Pipeline); cmd.draw(3, 1, 0, 0); cmd.endRendering(); cmd.pipelineBarrier2(&postRenderDependencies); vk::ImageBlit blitRegion = { .srcSubresource = { .aspectMask = vk::ImageAspectFlagBits::eColor, .mipLevel = 0, .baseArrayLayer = 0, .layerCount = 1, }, .srcOffsets = std::array{ vk::Offset3D{0, 0, 0}, ToOffset3D(currentAttachment->m_Extent), }, .dstSubresource = { .aspectMask = vk::ImageAspectFlagBits::eColor, .mipLevel = 0, .baseArrayLayer = 0, .layerCount = 1, }, .dstOffsets = std::array{ vk::Offset3D{0, 0, 0}, vk::Offset3D{Cast(swapchain.m_Extent.width), Cast(swapchain.m_Extent.height), 1}, }, }; cmd.blitImage(currentImage, postRenderBarriers[0].newLayout, currentSwapchainImage, postRenderBarriers[1].newLayout, 1, &blitRegion, vk::Filter::eLinear); cmd.pipelineBarrier2(&preGuiDependencies); gui::Draw(cmd, swapchain.m_Extent, currentSwapchainImageView); cmd.pipelineBarrier2(&prePresentDependencies); AbortIfFailed(cmd.end()); vk::PipelineStageFlags waitDstStage = vk::PipelineStageFlagBits::eColorAttachmentOutput; vk::SubmitInfo submitInfo = { .waitSemaphoreCount = 1, .pWaitSemaphores = ¤tFrame->m_ImageAcquireSem, .pWaitDstStageMask = &waitDstStage, .commandBufferCount = 1, .pCommandBuffers = &cmd, .signalSemaphoreCount = 1, .pSignalSemaphores = ¤tFrame->m_RenderFinishSem, }; AbortIfFailed(graphicsQueue.submit(1, &submitInfo, currentFrame->m_FrameAvailableFence)); currentFrame->Present(graphicsQueue, &swapchain, &surface, window.GetSize()); } device.WaitIdle(); pipelineCacheData = device.DumpPipelineCache(); ERROR_IF(!WriteFileBytes(PIPELINE_CACHE_FILE, pipelineCacheData), "Pipeline Cache incorrectly written"); gui::Destroy(&device); device.m_Device.destroy(descriptorPool, nullptr); return 0; }