project-aster/samples/02_box/box.cpp

831 lines
33 KiB
C++

// =============================================
// Aster: box.cpp
// Copyright (c) 2020-2024 Anish Bhobe
// =============================================
#include "buffer.h"
#include "constants.h"
#include "context.h"
#include "device.h"
#include "global.h"
#include "physical_device.h"
#include "pipeline.h"
#include "swapchain.h"
#include "window.h"
#include "helpers.h"
#define STB_IMAGE_IMPLEMENTATION
#include "image.h"
#include "stb_image.h"
#include <EASTL/array.h>
constexpr u32 MAX_FRAMES_IN_FLIGHT = 3;
constexpr auto VERTEX_SHADER_FILE = "shader/box.vert.glsl.spv";
constexpr auto FRAGMENT_SHADER_FILE = "shader/box.frag.glsl.spv";
#define AbortIfFailed(RESULT) \
do \
{ \
vk::Result _checkResultValue_; \
ERROR_IF(Failed(_checkResultValue_ = Cast<vk::Result>(RESULT)), "Cause: {}", _checkResultValue_) \
THEN_ABORT(_checkResultValue_); \
} while (false)
#define AbortIfFailedMV(RESULT, MSG, EXTRA) \
do \
{ \
vk::Result _checkResultValue_; \
ERROR_IF(Failed(_checkResultValue_ = Cast<vk::Result>(RESULT)), MSG " Cause: {}", EXTRA, _checkResultValue_) \
THEN_ABORT(_checkResultValue_); \
} while (false)
#define AbortIfFailedM(RESULT, MSG) \
do \
{ \
auto _checkResultValue_ = Cast<vk::Result>(RESULT); \
ERROR_IF(Failed(_checkResultValue_), MSG " Cause: {}", _checkResultValue_) THEN_ABORT(_checkResultValue_); \
} while (false)
struct ImageFile
{
void *m_Data = nullptr;
u32 m_Width = 0;
u32 m_Height = 0;
u32 m_NumChannels = 0;
bool Load(cstr fileName);
usize GetSize() const;
~ImageFile();
};
bool
ImageFile::Load(cstr fileName)
{
int width, height, nrChannels;
m_Data = stbi_load(fileName, &width, &height, &nrChannels, 4);
ERROR_IF(!m_Data, "Could not load {}", fileName);
if (!m_Data)
{
return false;
}
m_Width = width;
m_Height = height;
m_NumChannels = 4;
return true;
}
usize
ImageFile::GetSize() const
{
return m_Width * m_Height * m_NumChannels;
}
ImageFile::~ImageFile()
{
stbi_image_free(m_Data);
m_Data = nullptr;
}
vk::ShaderModule CreateShader(const Device *device, cstr shaderFile);
Pipeline CreatePipeline(const Device *device, const Swapchain *swapchain);
struct Vertex
{
vec3 m_Position;
vec2 m_UV0;
constexpr static vk::VertexInputBindingDescription
GetBinding(const u32 binding)
{
return {.binding = binding, .stride = sizeof(Vertex), .inputRate = vk::VertexInputRate::eVertex};
}
constexpr static eastl::array<vk::VertexInputAttributeDescription, 2>
GetAttributes(const u32 binding)
{
return {
vk::VertexInputAttributeDescription{
.location = 0,
.binding = binding,
.format = vk::Format::eR32G32B32Sfloat,
.offset = offsetof(Vertex, m_Position),
},
vk::VertexInputAttributeDescription{
.location = 1,
.binding = binding,
.format = vk::Format::eR32G32Sfloat,
.offset = offsetof(Vertex, m_UV0),
},
};
}
};
struct Camera
{
mat4 m_Model;
mat4 m_View;
mat4 m_Perspective;
};
struct Frame
{
const Device *m_Device;
vk::CommandPool m_Pool;
vk::CommandBuffer m_CommandBuffer;
vk::Fence m_FrameAvailableFence;
vk::Semaphore m_ImageAcquireSem;
vk::Semaphore m_RenderFinishSem;
Frame(const Device *device, u32 queueFamilyIndex, u32 frameCount);
~Frame();
};
int
main(int, char **)
{
MIN_LOG_LEVEL(Logger::LogType::eInfo);
Context context = {"Box", VERSION};
Window window = {"Box (Aster)", &context, {640, 480}};
PhysicalDevices physicalDevices = {&window, &context};
PhysicalDevice deviceToUse = FindSuitableDevice(physicalDevices);
INFO("Using {} as the primary device.", deviceToUse.m_DeviceProperties.deviceName.data());
Features enabledDeviceFeatures = {
.m_Vulkan10Features = {.samplerAnisotropy = true},
.m_Vulkan13Features = {.dynamicRendering = true},
};
QueueAllocation queueAllocation = FindAppropriateQueueAllocation(&deviceToUse);
Device device = {&context, &deviceToUse, &enabledDeviceFeatures, {queueAllocation}, "Primary Device"};
vk::Queue commandQueue = device.GetQueue(queueAllocation.m_Family, 0);
Swapchain swapchain = {&window, &device, "Primary Chain"};
Pipeline pipeline = CreatePipeline(&device, &swapchain);
Camera camera = {
.m_Model = {1.0f},
.m_View = glm::lookAt(vec3(0.0f, 2.0f, 2.0f), vec3(0.0f), vec3(0.0f, 1.0f, 0.0f)),
.m_Perspective = glm::perspective(
70_deg, Cast<f32>(swapchain.m_Extent.width) / Cast<f32>(swapchain.m_Extent.height), 0.1f, 100.0f),
};
vk::DescriptorPool descriptorPool;
vk::DescriptorSet descriptorSet;
{
vk::DescriptorSetLayout descriptorSetLayout = pipeline.m_SetLayouts.front();
eastl::array poolSizes = {
vk::DescriptorPoolSize{
.type = vk::DescriptorType::eUniformBuffer,
.descriptorCount = 1,
},
vk::DescriptorPoolSize{
.type = vk::DescriptorType::eCombinedImageSampler,
.descriptorCount = 1,
},
};
vk::DescriptorPoolCreateInfo descriptorPoolCreateInfo = {
.maxSets = 1, .poolSizeCount = Cast<u32>(poolSizes.size()), .pPoolSizes = poolSizes.data()};
AbortIfFailed(device.m_Device.createDescriptorPool(&descriptorPoolCreateInfo, nullptr, &descriptorPool));
vk::DescriptorSetAllocateInfo descriptorSetAllocateInfo = {
.descriptorPool = descriptorPool,
.descriptorSetCount = 1,
.pSetLayouts = &descriptorSetLayout,
};
AbortIfFailed(device.m_Device.allocateDescriptorSets(&descriptorSetAllocateInfo, &descriptorSet));
}
vk::CommandPool copyPool;
vk::CommandBuffer copyBuffer;
{
vk::CommandPoolCreateInfo poolCreateInfo = {
.flags = vk::CommandPoolCreateFlagBits::eTransient,
.queueFamilyIndex = queueAllocation.m_Family,
};
AbortIfFailedM(device.m_Device.createCommandPool(&poolCreateInfo, nullptr, &copyPool),
"Copy command pool creation failed.");
vk::CommandBufferAllocateInfo bufferAllocateInfo = {
.commandPool = copyPool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = 1,
};
AbortIfFailedM(device.m_Device.allocateCommandBuffers(&bufferAllocateInfo, &copyBuffer),
"Copy command buffer allocation failed.");
}
eastl::array vertices = {
Vertex{.m_Position = vec3(0.5f, 0.5f, -0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, -0.5f), .m_UV0 = vec2(1.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, -0.5f), .m_UV0 = vec2(0.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, -0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, 0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, 0.5f), .m_UV0 = vec2(1.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, 0.5f), .m_UV0 = vec2(0.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, 0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, -0.5f), .m_UV0 = vec2(1.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, 0.5f), .m_UV0 = vec2(0.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, -0.5f), .m_UV0 = vec2(1.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, 0.5f), .m_UV0 = vec2(0.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, -0.5f), .m_UV0 = vec2(1.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, -0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, 0.5f), .m_UV0 = vec2(0.0f, 1.0f)},
Vertex{.m_Position = vec3(-0.5f, -0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, -0.5f), .m_UV0 = vec2(1.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, -0.5f), .m_UV0 = vec2(0.0f, 0.0f)},
Vertex{.m_Position = vec3(-0.5f, 0.5f, 0.5f), .m_UV0 = vec2(0.0f, 1.0f)},
Vertex{.m_Position = vec3(0.5f, 0.5f, 0.5f), .m_UV0 = vec2(1.0f, 1.0f)},
};
ImageFile imageFile;
bool loaded = imageFile.Load("image/container.jpg");
assert(loaded);
INFO("Image {}x{} : {} channels", imageFile.m_Width, imageFile.m_Height, imageFile.m_NumChannels);
VertexBuffer vbo;
Texture crate;
vbo.Init(&device, vertices.size() * sizeof vertices[0], "VBO");
crate.Init(&device, {imageFile.m_Width, imageFile.m_Height}, false, "Crate Texture");
{
StagingBuffer vertexStaging, imageStaging;
vertexStaging.Init(&device, vertices.size() * sizeof vertices[0], "Vertex Staging");
vertexStaging.Write(&device, 0, vertices.size() * sizeof vertices[0], vertices.data());
imageStaging.Init(&device, imageFile.GetSize(), "Image Staging");
INFO("fine {}", imageFile.GetSize());
imageStaging.Write(&device, 0, imageFile.GetSize(), imageFile.m_Data);
vk::ImageMemoryBarrier imageReadyToWrite = {
.oldLayout = vk::ImageLayout::eUndefined,
.newLayout = vk::ImageLayout::eTransferDstOptimal,
.srcQueueFamilyIndex = queueAllocation.m_Family,
.dstQueueFamilyIndex = queueAllocation.m_Family,
.image = crate.m_Image,
.subresourceRange =
{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
vk::ImageMemoryBarrier imageReadyToRead = {
.oldLayout = vk::ImageLayout::eTransferDstOptimal,
.newLayout = vk::ImageLayout::eShaderReadOnlyOptimal,
.srcQueueFamilyIndex = queueAllocation.m_Family,
.dstQueueFamilyIndex = queueAllocation.m_Family,
.image = crate.m_Image,
.subresourceRange =
{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
vk::Fence fence;
vk::FenceCreateInfo fenceCreateInfo = {};
AbortIfFailed(device.m_Device.createFence(&fenceCreateInfo, nullptr, &fence));
vk::CommandBufferBeginInfo beginInfo = {.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit};
AbortIfFailed(copyBuffer.begin(&beginInfo));
copyBuffer.pipelineBarrier(vk::PipelineStageFlagBits::eHost, vk::PipelineStageFlagBits::eTransfer, {}, 0,
nullptr, 0, nullptr, 1, &imageReadyToWrite);
vk::BufferCopy bufferCopy = {.srcOffset = 0, .dstOffset = 0, .size = vertexStaging.GetSize()};
copyBuffer.copyBuffer(vertexStaging.m_Buffer, vbo.m_Buffer, 1, &bufferCopy);
vk::BufferImageCopy imageCopy = {
.bufferOffset = 0,
.bufferRowLength = imageFile.m_Width,
.bufferImageHeight = imageFile.m_Height,
.imageSubresource =
{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.mipLevel = 0,
.baseArrayLayer = 0,
.layerCount = 1,
},
.imageOffset = {},
.imageExtent = {imageFile.m_Width, imageFile.m_Height, 1},
};
copyBuffer.copyBufferToImage(imageStaging.m_Buffer, crate.m_Image, vk::ImageLayout::eTransferDstOptimal, 1,
&imageCopy);
copyBuffer.pipelineBarrier(vk::PipelineStageFlagBits::eTransfer, vk::PipelineStageFlagBits::eFragmentShader, {},
0, nullptr, 0, nullptr, 1, &imageReadyToRead);
AbortIfFailed(copyBuffer.end());
vk::SubmitInfo submitInfo = {
.commandBufferCount = 1,
.pCommandBuffers = &copyBuffer,
};
AbortIfFailed(commandQueue.submit(1, &submitInfo, fence));
INFO("Submit copy");
AbortIfFailed(device.m_Device.waitForFences(1, &fence, true, MaxValue<u64>));
INFO("Fence wait");
AbortIfFailedM(device.m_Device.resetCommandPool(copyPool, {}), "Couldn't reset command pool.");
device.m_Device.destroy(fence, nullptr);
vertexStaging.Destroy(&device);
imageStaging.Destroy(&device);
}
vk::ImageView imageView;
vk::Sampler sampler;
{
vk::ImageViewCreateInfo imageViewCreateInfo = {
.image = crate.m_Image,
.viewType = vk::ImageViewType::e2D,
.format = vk::Format::eR8G8B8A8Srgb,
.components =
vk::ComponentMapping{
.r = vk::ComponentSwizzle::eIdentity,
.g = vk::ComponentSwizzle::eIdentity,
.b = vk::ComponentSwizzle::eIdentity,
.a = vk::ComponentSwizzle::eIdentity,
},
.subresourceRange =
{
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
},
};
AbortIfFailed(device.m_Device.createImageView(&imageViewCreateInfo, nullptr, &imageView));
vk::SamplerCreateInfo samplerCreateInfo = {
.magFilter = vk::Filter::eLinear,
.minFilter = vk::Filter::eLinear,
.mipmapMode = vk::SamplerMipmapMode::eLinear,
.addressModeU = vk::SamplerAddressMode::eRepeat,
.addressModeV = vk::SamplerAddressMode::eRepeat,
.addressModeW = vk::SamplerAddressMode::eRepeat,
.mipLodBias = 0.2,
.anisotropyEnable = true,
.maxAnisotropy = 1.0f,
.compareEnable = false,
.minLod = 0,
.maxLod = 4,
.unnormalizedCoordinates = false,
};
AbortIfFailed(device.m_Device.createSampler(&samplerCreateInfo, nullptr, &sampler));
}
UniformBuffer ubo;
ubo.Init(&device, sizeof camera, "Camera UBO");
ubo.Write(&device, 0, sizeof camera, &camera);
vk::DescriptorBufferInfo descriptorBufferInfo = {
.buffer = ubo.m_Buffer,
.offset = 0,
.range = ubo.GetSize(),
};
vk::DescriptorImageInfo descriptorImageInfo = {
.sampler = sampler,
.imageView = imageView,
.imageLayout = vk::ImageLayout::eShaderReadOnlyOptimal,
};
eastl::array writeDescriptors = {
vk::WriteDescriptorSet{
.dstSet = descriptorSet,
.dstBinding = 0,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = vk::DescriptorType::eUniformBuffer,
.pBufferInfo = &descriptorBufferInfo,
},
vk::WriteDescriptorSet{
.dstSet = descriptorSet,
.dstBinding = 1,
.dstArrayElement = 0,
.descriptorCount = 1,
.descriptorType = vk::DescriptorType::eCombinedImageSampler,
.pImageInfo = &descriptorImageInfo,
},
};
device.m_Device.updateDescriptorSets(Cast<u32>(writeDescriptors.size()), writeDescriptors.data(), 0, nullptr);
// Persistent variables
vk::Viewport viewport = {
.x = 0,
.y = Cast<f32>(swapchain.m_Extent.height),
.width = Cast<f32>(swapchain.m_Extent.width),
.height = -Cast<f32>(swapchain.m_Extent.height),
.minDepth = 0.0,
.maxDepth = 1.0,
};
vk::Rect2D scissor = {
.offset = {0, 0},
.extent = swapchain.m_Extent,
};
vk::ImageSubresourceRange subresourceRange = {
.aspectMask = vk::ImageAspectFlagBits::eColor,
.baseMipLevel = 0,
.levelCount = 1,
.baseArrayLayer = 0,
.layerCount = 1,
};
vk::ImageMemoryBarrier topOfThePipeBarrier = {
.oldLayout = vk::ImageLayout::eUndefined,
.newLayout = vk::ImageLayout::eColorAttachmentOptimal,
.srcQueueFamilyIndex = queueAllocation.m_Family,
.dstQueueFamilyIndex = queueAllocation.m_Family,
.subresourceRange = subresourceRange,
};
vk::ImageMemoryBarrier renderToPresentBarrier = {
.oldLayout = vk::ImageLayout::eColorAttachmentOptimal,
.newLayout = vk::ImageLayout::ePresentSrcKHR,
.srcQueueFamilyIndex = queueAllocation.m_Family,
.dstQueueFamilyIndex = queueAllocation.m_Family,
.subresourceRange = subresourceRange,
};
// Frames
eastl::fixed_vector<Frame, MAX_FRAMES_IN_FLIGHT> frames;
for (int i = 0; i < MAX_FRAMES_IN_FLIGHT; ++i)
{
frames.emplace_back(&device, queueAllocation.m_Family, i);
}
Time::Init();
INFO("Starting loop");
u32 frameIndex = 0;
while (window.Poll())
{
Frame *currentFrame = &frames[frameIndex];
Time::Update();
camera.m_Model *= rotate(mat4{1.0f}, Cast<f32>(45.0_deg * Time::m_Delta), vec3(0.0f, 1.0f, 0.0f));
ubo.Write(&device, 0, sizeof camera, &camera);
AbortIfFailedMV(device.m_Device.waitForFences(1, &currentFrame->m_FrameAvailableFence, true, MaxValue<u64>),
"Waiting for fence {} failed.", frameIndex);
u32 imageIndex;
auto result = device.m_Device.acquireNextImageKHR(swapchain.m_Swapchain, MaxValue<u64>,
currentFrame->m_ImageAcquireSem, nullptr, &imageIndex);
if (Failed(result))
{
switch (result)
{
case vk::Result::eErrorOutOfDateKHR:
case vk::Result::eSuboptimalKHR:
INFO("Recreating Swapchain. Cause: {}", result);
swapchain.Create(&window);
viewport.y = Cast<f32>(swapchain.m_Extent.height);
viewport.width = Cast<f32>(swapchain.m_Extent.width);
viewport.height = -Cast<f32>(swapchain.m_Extent.height);
scissor.extent = swapchain.m_Extent;
continue; // Image acquire has failed. We move to the next frame.
default:
AbortIfFailedMV(result, "Waiting for swapchain image {} failed.", frameIndex);
}
}
// Reset fences here. In case swapchain was out of date, we leave the fences signalled.
AbortIfFailedMV(device.m_Device.resetFences(1, &currentFrame->m_FrameAvailableFence), "Fence {} reset failed.",
frameIndex);
AbortIfFailedMV(device.m_Device.resetCommandPool(currentFrame->m_Pool, {}), "Command pool {} reset failed.",
frameIndex);
vk::ImageView currentImageView = swapchain.m_ImageViews[imageIndex];
vk::Image currentImage = swapchain.m_Images[imageIndex];
vk::CommandBuffer cmd = currentFrame->m_CommandBuffer;
topOfThePipeBarrier.image = currentImage;
renderToPresentBarrier.image = currentImage;
vk::CommandBufferBeginInfo beginInfo = {.flags = vk::CommandBufferUsageFlagBits::eOneTimeSubmit};
AbortIfFailed(cmd.begin(&beginInfo));
cmd.pipelineBarrier(vk::PipelineStageFlagBits::eTopOfPipe, vk::PipelineStageFlagBits::eColorAttachmentOutput,
{}, 0, nullptr, 0, nullptr, 1, &topOfThePipeBarrier);
// Render
vk::RenderingAttachmentInfo attachmentInfo = {
.imageView = currentImageView,
.imageLayout = vk::ImageLayout::eColorAttachmentOptimal,
.resolveMode = vk::ResolveModeFlagBits::eNone,
.loadOp = vk::AttachmentLoadOp::eClear,
.storeOp = vk::AttachmentStoreOp::eStore,
.clearValue = vk::ClearColorValue{0.0f, 0.0f, 0.0f, 1.0f},
};
vk::RenderingInfo renderingInfo = {
.renderArea = {.extent = swapchain.m_Extent},
.layerCount = 1,
.colorAttachmentCount = 1,
.pColorAttachments = &attachmentInfo,
};
cmd.beginRendering(&renderingInfo);
cmd.setViewport(0, 1, &viewport);
cmd.setScissor(0, 1, &scissor);
cmd.bindPipeline(vk::PipelineBindPoint::eGraphics, pipeline.m_Pipeline);
cmd.bindDescriptorSets(vk::PipelineBindPoint::eGraphics, pipeline.m_Layout, 0, 1, &descriptorSet, 0, nullptr);
usize offsets = 0;
cmd.bindVertexBuffers(0, 1, &vbo.m_Buffer, &offsets);
cmd.draw(Cast<u32>(vertices.size()), 1, 0, 0);
cmd.endRendering();
cmd.pipelineBarrier(vk::PipelineStageFlagBits::eColorAttachmentOutput, vk::PipelineStageFlagBits::eBottomOfPipe,
{}, 0, nullptr, 0, nullptr, 1, &renderToPresentBarrier);
AbortIfFailed(cmd.end());
vk::PipelineStageFlags waitDstStage = vk::PipelineStageFlagBits::eColorAttachmentOutput;
vk::SubmitInfo submitInfo = {
.waitSemaphoreCount = 1,
.pWaitSemaphores = &currentFrame->m_ImageAcquireSem,
.pWaitDstStageMask = &waitDstStage,
.commandBufferCount = 1,
.pCommandBuffers = &cmd,
.signalSemaphoreCount = 1,
.pSignalSemaphores = &currentFrame->m_RenderFinishSem,
};
AbortIfFailed(commandQueue.submit(1, &submitInfo, currentFrame->m_FrameAvailableFence));
vk::PresentInfoKHR presentInfo = {
.waitSemaphoreCount = 1,
.pWaitSemaphores = &currentFrame->m_RenderFinishSem,
.swapchainCount = 1,
.pSwapchains = &swapchain.m_Swapchain,
.pImageIndices = &imageIndex,
.pResults = nullptr,
};
result = commandQueue.presentKHR(&presentInfo);
if (Failed(result))
{
switch (result)
{
case vk::Result::eErrorOutOfDateKHR:
case vk::Result::eSuboptimalKHR:
INFO("Recreating Swapchain. Cause: {}", result);
swapchain.Create(&window);
viewport.y = Cast<f32>(swapchain.m_Extent.height);
viewport.width = Cast<f32>(swapchain.m_Extent.width);
viewport.height = -Cast<f32>(swapchain.m_Extent.height);
scissor.extent = swapchain.m_Extent;
break; // Present failed. We redo the frame.
default:
AbortIfFailedM(result, "Swapchain Present failed.");
}
}
frameIndex = (frameIndex + 1) % MAX_FRAMES_IN_FLIGHT;
}
AbortIfFailed(device.m_Device.waitIdle());
device.m_Device.destroy(sampler, nullptr);
device.m_Device.destroy(imageView, nullptr);
ubo.Destroy(&device);
device.m_Device.destroy(descriptorPool, nullptr);
device.m_Device.destroy(copyPool, nullptr);
crate.Destroy(&device);
vbo.Destroy(&device);
return 0;
}
Frame::Frame(const Device *device, const u32 queueFamilyIndex, const u32 frameCount)
{
m_Device = device;
const vk::CommandPoolCreateInfo commandPoolCreateInfo = {
.flags = vk::CommandPoolCreateFlagBits::eTransient,
.queueFamilyIndex = queueFamilyIndex,
};
AbortIfFailedMV(device->m_Device.createCommandPool(&commandPoolCreateInfo, nullptr, &m_Pool),
"Could not command pool for frame {}", frameCount);
constexpr vk::FenceCreateInfo fenceCreateInfo = {.flags = vk::FenceCreateFlagBits::eSignaled};
AbortIfFailedMV(device->m_Device.createFence(&fenceCreateInfo, nullptr, &m_FrameAvailableFence),
"Could not create a fence for frame {}", frameCount);
constexpr vk::SemaphoreCreateInfo semaphoreCreateInfo = {};
AbortIfFailedMV(device->m_Device.createSemaphore(&semaphoreCreateInfo, nullptr, &m_ImageAcquireSem),
"Could not create IA semaphore for frame {}.", frameCount);
AbortIfFailedMV(device->m_Device.createSemaphore(&semaphoreCreateInfo, nullptr, &m_RenderFinishSem),
"Could not create RF semaphore for frame {}.", frameCount);
const vk::CommandBufferAllocateInfo allocateInfo = {
.commandPool = m_Pool,
.level = vk::CommandBufferLevel::ePrimary,
.commandBufferCount = 1,
};
AbortIfFailed(m_Device->m_Device.allocateCommandBuffers(&allocateInfo, &m_CommandBuffer));
DEBUG("Frame {} created successfully.", frameCount);
}
Pipeline
CreatePipeline(const Device *device, const Swapchain *swapchain)
{
// Pipeline Setup
auto vertexShaderModule = CreateShader(device, VERTEX_SHADER_FILE);
auto fragmentShaderModule = CreateShader(device, FRAGMENT_SHADER_FILE);
eastl::array<vk::PipelineShaderStageCreateInfo, 2> shaderStages = {{
{
.stage = vk::ShaderStageFlagBits::eVertex,
.module = vertexShaderModule,
.pName = "main",
},
{
.stage = vk::ShaderStageFlagBits::eFragment,
.module = fragmentShaderModule,
.pName = "main",
},
}};
eastl::array descriptorSetLayoutBinding = {
vk::DescriptorSetLayoutBinding{
.binding = 0,
.descriptorType = vk::DescriptorType::eUniformBuffer,
.descriptorCount = 1,
.stageFlags = vk::ShaderStageFlagBits::eVertex,
},
vk::DescriptorSetLayoutBinding{
.binding = 1,
.descriptorType = vk::DescriptorType::eCombinedImageSampler,
.descriptorCount = 1,
.stageFlags = vk::ShaderStageFlagBits::eFragment,
},
};
vk::DescriptorSetLayoutCreateInfo descriptorSetLayoutCreateInfo = {
.bindingCount = Cast<u32>(descriptorSetLayoutBinding.size()),
.pBindings = descriptorSetLayoutBinding.data(),
};
vk::DescriptorSetLayout descriptorSetLayout;
AbortIfFailed(
device->m_Device.createDescriptorSetLayout(&descriptorSetLayoutCreateInfo, nullptr, &descriptorSetLayout));
vk::PipelineLayoutCreateInfo pipelineLayoutCreateInfo = {
.setLayoutCount = 1,
.pSetLayouts = &descriptorSetLayout,
.pushConstantRangeCount = 0,
.pPushConstantRanges = nullptr,
};
vk::PipelineLayout pipelineLayout;
AbortIfFailed(device->m_Device.createPipelineLayout(&pipelineLayoutCreateInfo, nullptr, &pipelineLayout));
device->SetName(pipelineLayout, "Box Layout");
vk::VertexInputBindingDescription inputBindingDescription = Vertex::GetBinding(0);
auto inputAttributeDescription = Vertex::GetAttributes(0);
vk::PipelineVertexInputStateCreateInfo vertexInputStateCreateInfo = {
.vertexBindingDescriptionCount = 1,
.pVertexBindingDescriptions = &inputBindingDescription,
.vertexAttributeDescriptionCount = Cast<u32>(inputAttributeDescription.size()),
.pVertexAttributeDescriptions = inputAttributeDescription.data(),
};
vk::PipelineInputAssemblyStateCreateInfo inputAssemblyStateCreateInfo = {
.topology = vk::PrimitiveTopology::eTriangleList,
.primitiveRestartEnable = false,
};
vk::PipelineViewportStateCreateInfo viewportStateCreateInfo = {
.viewportCount = 1,
.scissorCount = 1,
};
vk::PipelineRasterizationStateCreateInfo rasterizationStateCreateInfo = {
.depthClampEnable = false,
.rasterizerDiscardEnable = false,
.polygonMode = vk::PolygonMode::eFill,
.cullMode = vk::CullModeFlagBits::eBack,
.frontFace = vk::FrontFace::eCounterClockwise,
.depthBiasEnable = false,
.lineWidth = 1.0,
};
vk::PipelineMultisampleStateCreateInfo multisampleStateCreateInfo = {
.rasterizationSamples = vk::SampleCountFlagBits::e1,
.sampleShadingEnable = false,
};
vk::PipelineDepthStencilStateCreateInfo depthStencilStateCreateInfo = {
.depthTestEnable = false,
.depthWriteEnable = false,
};
vk::PipelineColorBlendAttachmentState colorBlendAttachmentState = {
.blendEnable = false,
.srcColorBlendFactor = vk::BlendFactor::eSrcColor,
.dstColorBlendFactor = vk::BlendFactor::eOneMinusSrcColor,
.colorBlendOp = vk::BlendOp::eAdd,
.srcAlphaBlendFactor = vk::BlendFactor::eSrcAlpha,
.dstAlphaBlendFactor = vk::BlendFactor::eOneMinusSrcAlpha,
.alphaBlendOp = vk::BlendOp::eAdd,
.colorWriteMask = vk::ColorComponentFlagBits::eR | vk::ColorComponentFlagBits::eG |
vk::ColorComponentFlagBits::eB | vk::ColorComponentFlagBits::eA,
};
vk::PipelineColorBlendStateCreateInfo colorBlendStateCreateInfo = {
.logicOpEnable = false,
.attachmentCount = 1,
.pAttachments = &colorBlendAttachmentState,
};
eastl::array dynamicStates = {
vk::DynamicState::eScissor,
vk::DynamicState::eViewport,
};
vk::PipelineDynamicStateCreateInfo dynamicStateCreateInfo = {
.dynamicStateCount = Cast<u32>(dynamicStates.size()),
.pDynamicStates = dynamicStates.data(),
};
vk::PipelineRenderingCreateInfo renderingCreateInfo = {
.viewMask = 0,
.colorAttachmentCount = 1,
.pColorAttachmentFormats = &swapchain->m_Format,
};
vk::GraphicsPipelineCreateInfo pipelineCreateInfo = {
.pNext = &renderingCreateInfo,
.stageCount = Cast<u32>(shaderStages.size()),
.pStages = shaderStages.data(),
.pVertexInputState = &vertexInputStateCreateInfo,
.pInputAssemblyState = &inputAssemblyStateCreateInfo,
.pViewportState = &viewportStateCreateInfo,
.pRasterizationState = &rasterizationStateCreateInfo,
.pMultisampleState = &multisampleStateCreateInfo,
.pDepthStencilState = &depthStencilStateCreateInfo,
.pColorBlendState = &colorBlendStateCreateInfo,
.pDynamicState = &dynamicStateCreateInfo,
.layout = pipelineLayout,
};
vk::Pipeline pipeline;
AbortIfFailed(device->m_Device.createGraphicsPipelines(nullptr, 1, &pipelineCreateInfo, nullptr, &pipeline));
device->SetName(pipeline, "Box Pipeline");
device->m_Device.destroy(vertexShaderModule, nullptr);
device->m_Device.destroy(fragmentShaderModule, nullptr);
return {device, pipelineLayout, pipeline, {descriptorSetLayout}};
}
vk::ShaderModule
CreateShader(const Device *device, cstr shaderFile)
{
eastl::vector<u32> shaderCode = ReadFile(shaderFile);
const vk::ShaderModuleCreateInfo shaderModuleCreateInfo = {
.codeSize = shaderCode.size() * sizeof(u32),
.pCode = shaderCode.data(),
};
vk::ShaderModule shaderModule;
AbortIfFailedMV(device->m_Device.createShaderModule(&shaderModuleCreateInfo, nullptr, &shaderModule),
"Shader {} could not be created.", shaderFile);
return shaderModule;
}
Frame::~Frame()
{
m_Device->m_Device.destroy(m_RenderFinishSem, nullptr);
m_Device->m_Device.destroy(m_ImageAcquireSem, nullptr);
m_Device->m_Device.destroy(m_FrameAvailableFence, nullptr);
m_Device->m_Device.destroy(m_Pool, nullptr);
DEBUG("Destoryed Frame");
}